Loading…
A low-area high-efficiency video coding inverse transform core using resource and time sharing architecture
In this paper, a very-large-scale integration (VLSI) design that can support high-efficiency video coding inverse discrete cosine transform (IDCT) for multiple transform sizes is proposed. The proposed two-dimensional (2-D) IDCT is implemented at a low area by using a single one-dimensional (1-D) ID...
Saved in:
Published in: | EURASIP journal on advances in signal processing 2020-11, Vol.2020 (1), p.1-9, Article 48 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | In this paper, a very-large-scale integration (VLSI) design that can support high-efficiency video coding inverse discrete cosine transform (IDCT) for multiple transform sizes is proposed. The proposed two-dimensional (2-D) IDCT is implemented at a low area by using a single one-dimensional (1-D) IDCT core with a transpose memory. The proposed 1-D IDCT core decomposes a 32-point transform into 16-, 8-, and 4-point matrix products according to the symmetric property of the transform coefficient. Moreover, we use the shift-and-add unit to share hardware resources between multiple transform dimension matrix products. The 1-D IDCT core can simultaneously calculate the first- and second-dimensional data. The results indicate that the proposed 2-D IDCT core has a throughput rate of 250 MP/s, with only 110 K gate counts when implemented into the Taiwan semiconductor manufacturing (TSMC) 90-nm complementary metal-oxide-semiconductor (CMOS) technology. The results show the proposed circuit has the smallest area supporting the multiple transform sizes. |
---|---|
ISSN: | 1687-6180 1687-6172 1687-6180 |
DOI: | 10.1186/s13634-020-00708-0 |