Loading…

Using eDNA sampling for species-specific fish detection in tropical oceanic samples: limitations and recommendations for future use

Over the past decade, environmental DNA (eDNA) has become a resourceful tool in conservation and biomonitoring. Environmental DNA has been applied in a variety of environments, but the application to studies of marine fish, particularly at tropical latitudes, are limited. Since many commercially imp...

Full description

Saved in:
Bibliographic Details
Published in:PeerJ (San Francisco, CA) CA), 2023-02, Vol.11, p.e14810-e14810, Article e14810
Main Authors: Gonzalez Colmenares, Giovanna M, Gonzalez Montes, Alejandro J, Harms-Tuohy, Chelsea A, Schizas, Nikolaos V
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Over the past decade, environmental DNA (eDNA) has become a resourceful tool in conservation and biomonitoring. Environmental DNA has been applied in a variety of environments, but the application to studies of marine fish, particularly at tropical latitudes, are limited. Since many commercially important Caribbean fishes are overexploited, these species are optimal candidates to explore the use of this method as a biomonitoring tool. Specifically, for many of these species, the formation of fish spawning aggregations (FSAs) marks a critical life history event where fishes will gather in large numbers for reproduction. These FSAs are ephemeral in nature, lasting only a few days, but are predictable in time and space which makes them susceptible to overfishing. In this study, we test the feasibility of using an eDNA sampling approach (water and sediment collection) to detect the presence of known FSAs off the west coast of Puerto Rico, with cytochrome c oxidase subunit 1 (CO1) and 12S rRNA (12S) primers designed to target specific species. A total of 290 eDNA samples were collected and, of those, 206 eDNA samples were processed. All eDNA samples varied in DNA concentration, both between replicates and collection methods. A total of 12 primer sets were developed and tested using traditional PCR and qPCR. Despite validation of primer accuracy and sample collection during known peak spawning times, the use of traditional PCR and qPCR with both molecular markers failed to produce species-specific amplification. Thus, a trial test was conducted using the CO1 primers in which target fish DNA was 'spiked' at various concentrations into the respective eDNA samples to determine the target species DNA concentration limit of detection. Upon successful amplification of the trial, results indicated that eDNA samples were below the detection threshold of our methods, suggesting that the number of fish present at the spawning aggregations was inadequate for single-species detection methods. In addition, elements such as the unavoidable presence of non-target DNA, oceanic environmental conditions, shedding rates of target fish, among other biotic and abiotic factors could have affected DNA persistence and degradation rates at the sites. We provide recommendations for species-specific fish detection in lower latitudes, and suggestions for studies aiming to monitor or detect fish spawning aggregations using eDNA sampling.
ISSN:2167-8359
2167-8359
DOI:10.7717/peerj.14810