Loading…
Optimal Control of Probabilistic Boolean Networks: An Information-Theoretic Approach
The primary challenge with biological sciences is to control gene regulatory networks (GRNs), thereby creating therapeutic intervention methods that alter network dynamics in the desired manner. The optimal control of GRNs with probabilistic Boolean control networks (PBCNs) as the underlying structu...
Saved in:
Published in: | IEEE access 2021, Vol.9, p.157068-157082 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The primary challenge with biological sciences is to control gene regulatory networks (GRNs), thereby creating therapeutic intervention methods that alter network dynamics in the desired manner. The optimal control of GRNs with probabilistic Boolean control networks (PBCNs) as the underlying structure is a solution to this challenge. Owing to the exponential growth in network size with the increase in the number of genes, we need an optimal control approach that scales to large systems without imposing any limitations on network dynamics. Furthermore, we are encouraged to use the graphics processing unit (GPU) to reduce time complexity utilizing the easily available and enhanced computational resources. The optimal control of PBCNs in the Markovian framework is developed in this paper employing an information-theoretic approach which includes Kullback-Leibler (KL) divergence. We convert the nonlinear optimal control problem of PBCN to a linear problem by using the exponential transformation of the cost function, also known as the desirability function. The linear formulation enables us to compute an optimal control using the path integral (PI) method. Furthermore, we offer sampling-based methodologies for approximating PI and therefore optimizing PBCN control. The sampling-based method can be implemented in parallel, which solves the optimal control problem for large PBCNs. |
---|---|
ISSN: | 2169-3536 2169-3536 |
DOI: | 10.1109/ACCESS.2021.3130118 |