Loading…

Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review

This narrative review explores the burgeoning field of Artificial Intelligence (AI)-driven Breast Cancer (BC) survival prediction, emphasizing the transformative impact on patient care. From machine learning to deep neural networks, diverse models demonstrate the potential to refine prognosis accura...

Full description

Saved in:
Bibliographic Details
Published in:Cancer informatics 2024-01, Vol.23, p.11769351241272389
Main Authors: Mooghal, Mehwish, Nasir, Saad, Arif, Aiman, Khan, Wajiha, Rashid, Yasmin Abdul, Vohra, Lubna M
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c415t-27bb17f15f5fd5f89c1a425585d4c9a372aca17b83dea42abe35deb821f703bf3
container_end_page
container_issue
container_start_page 11769351241272389
container_title Cancer informatics
container_volume 23
creator Mooghal, Mehwish
Nasir, Saad
Arif, Aiman
Khan, Wajiha
Rashid, Yasmin Abdul
Vohra, Lubna M
description This narrative review explores the burgeoning field of Artificial Intelligence (AI)-driven Breast Cancer (BC) survival prediction, emphasizing the transformative impact on patient care. From machine learning to deep neural networks, diverse models demonstrate the potential to refine prognosis accuracy and tailor treatment strategies. The literature underscores the need for clinician integration and addresses challenges of model generalizability and ethical considerations. Crucially, AI’s promise extends to Low- and Middle-Income Countries (LMICs), presenting an opportunity to bridge healthcare disparities. Collaborative efforts in research, technology transfer, and education are essential to empower healthcare professionals in LMICs. As we navigate this frontier, AI emerges not only as a technological advancement but as a guiding light toward personalized, accessible BC care, marking a significant stride in the global fight against this formidable disease.
doi_str_mv 10.1177/11769351241272389
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_112e6c4e14824f309198406f73407b04</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><sage_id>10.1177_11769351241272389</sage_id><doaj_id>oai_doaj_org_article_112e6c4e14824f309198406f73407b04</doaj_id><sourcerecordid>3150156475</sourcerecordid><originalsourceid>FETCH-LOGICAL-c415t-27bb17f15f5fd5f89c1a425585d4c9a372aca17b83dea42abe35deb821f703bf3</originalsourceid><addsrcrecordid>eNp1kktv1DAQgCNERR_wA7igSFy4pHj8iBMuaNnyWKkqiMfZcpzx4lXWLnYSxL_H2y19gLjY1sznz57RFMVTIKcAUr7MS90yAZQDlZQ17YPiaBerdsGHd86HxXFKG0I41LR9VByyljeMAT8qzMr7MOvRBZ9K58tFHJ11xumhXPkRh8Gt0RuszqKb0ZdvIuo0lkudY7H8MsXZzRn9FLF3Zid5VS7KCx1jNs5YfsbZ4c_HxYHVQ8In1_tJ8e3d26_LD9X5x_er5eK8MhzEWFHZdSAtCCtsL2zTGtCcCtGInptWM0m10SC7hvWYE7pDJnrsGgpWEtZZdlKs9t4-6I26jG6r4y8VtFNXgRDXSufyzIAKgGJtOAJvKLeMtNA2nNRWMk5kR3h2vd67Lqdui71BP0Y93JPez3j3Xa3DnM2C1tBCNry4NsTwY8I0qq1LJndUewxTUgwoI1ISwjL6_C90E6boc68yJQiImkuRKdhTJoaUItqb3wBRu3lQ_8xDvvPsbhk3N_4MQAZO90DSa7x99v_G3_AqvO4</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3150156475</pqid></control><display><type>article</type><title>Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review</title><source>Publicly Available Content Database</source><source>Sage Journals GOLD Open Access 2024</source><source>PubMed Central</source><creator>Mooghal, Mehwish ; Nasir, Saad ; Arif, Aiman ; Khan, Wajiha ; Rashid, Yasmin Abdul ; Vohra, Lubna M</creator><creatorcontrib>Mooghal, Mehwish ; Nasir, Saad ; Arif, Aiman ; Khan, Wajiha ; Rashid, Yasmin Abdul ; Vohra, Lubna M</creatorcontrib><description>This narrative review explores the burgeoning field of Artificial Intelligence (AI)-driven Breast Cancer (BC) survival prediction, emphasizing the transformative impact on patient care. From machine learning to deep neural networks, diverse models demonstrate the potential to refine prognosis accuracy and tailor treatment strategies. The literature underscores the need for clinician integration and addresses challenges of model generalizability and ethical considerations. Crucially, AI’s promise extends to Low- and Middle-Income Countries (LMICs), presenting an opportunity to bridge healthcare disparities. Collaborative efforts in research, technology transfer, and education are essential to empower healthcare professionals in LMICs. As we navigate this frontier, AI emerges not only as a technological advancement but as a guiding light toward personalized, accessible BC care, marking a significant stride in the global fight against this formidable disease.</description><identifier>ISSN: 1176-9351</identifier><identifier>EISSN: 1176-9351</identifier><identifier>DOI: 10.1177/11769351241272389</identifier><identifier>PMID: 39483314</identifier><language>eng</language><publisher>London, England: SAGE Publications</publisher><subject>Artificial intelligence ; Artificial neural networks ; Breast cancer ; Health care ; Machine learning ; Narratives ; Neural networks ; Original Research ; Survival ; Technology transfer</subject><ispartof>Cancer informatics, 2024-01, Vol.23, p.11769351241272389</ispartof><rights>The Author(s) 2024</rights><rights>The Author(s) 2024.</rights><rights>The Author(s) 2024. This work is licensed under the Creative Commons Attribution – Non-Commercial License https://creativecommons.org/licenses/by-nc/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024 SAGE Publications Ltd unless otherwise noted. Manuscript content on this site is licensed under Creative Commons Licenses</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c415t-27bb17f15f5fd5f89c1a425585d4c9a372aca17b83dea42abe35deb821f703bf3</cites><orcidid>0000-0002-6386-4047</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11526191/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3150156475?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,21947,25733,27832,27903,27904,36991,36992,44569,44924,45312,53769,53771</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39483314$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Mooghal, Mehwish</creatorcontrib><creatorcontrib>Nasir, Saad</creatorcontrib><creatorcontrib>Arif, Aiman</creatorcontrib><creatorcontrib>Khan, Wajiha</creatorcontrib><creatorcontrib>Rashid, Yasmin Abdul</creatorcontrib><creatorcontrib>Vohra, Lubna M</creatorcontrib><title>Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review</title><title>Cancer informatics</title><addtitle>Cancer Inform</addtitle><description>This narrative review explores the burgeoning field of Artificial Intelligence (AI)-driven Breast Cancer (BC) survival prediction, emphasizing the transformative impact on patient care. From machine learning to deep neural networks, diverse models demonstrate the potential to refine prognosis accuracy and tailor treatment strategies. The literature underscores the need for clinician integration and addresses challenges of model generalizability and ethical considerations. Crucially, AI’s promise extends to Low- and Middle-Income Countries (LMICs), presenting an opportunity to bridge healthcare disparities. Collaborative efforts in research, technology transfer, and education are essential to empower healthcare professionals in LMICs. As we navigate this frontier, AI emerges not only as a technological advancement but as a guiding light toward personalized, accessible BC care, marking a significant stride in the global fight against this formidable disease.</description><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>Breast cancer</subject><subject>Health care</subject><subject>Machine learning</subject><subject>Narratives</subject><subject>Neural networks</subject><subject>Original Research</subject><subject>Survival</subject><subject>Technology transfer</subject><issn>1176-9351</issn><issn>1176-9351</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>AFRWT</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kktv1DAQgCNERR_wA7igSFy4pHj8iBMuaNnyWKkqiMfZcpzx4lXWLnYSxL_H2y19gLjY1sznz57RFMVTIKcAUr7MS90yAZQDlZQ17YPiaBerdsGHd86HxXFKG0I41LR9VByyljeMAT8qzMr7MOvRBZ9K58tFHJ11xumhXPkRh8Gt0RuszqKb0ZdvIuo0lkudY7H8MsXZzRn9FLF3Zid5VS7KCx1jNs5YfsbZ4c_HxYHVQ8In1_tJ8e3d26_LD9X5x_er5eK8MhzEWFHZdSAtCCtsL2zTGtCcCtGInptWM0m10SC7hvWYE7pDJnrsGgpWEtZZdlKs9t4-6I26jG6r4y8VtFNXgRDXSufyzIAKgGJtOAJvKLeMtNA2nNRWMk5kR3h2vd67Lqdui71BP0Y93JPez3j3Xa3DnM2C1tBCNry4NsTwY8I0qq1LJndUewxTUgwoI1ISwjL6_C90E6boc68yJQiImkuRKdhTJoaUItqb3wBRu3lQ_8xDvvPsbhk3N_4MQAZO90DSa7x99v_G3_AqvO4</recordid><startdate>20240101</startdate><enddate>20240101</enddate><creator>Mooghal, Mehwish</creator><creator>Nasir, Saad</creator><creator>Arif, Aiman</creator><creator>Khan, Wajiha</creator><creator>Rashid, Yasmin Abdul</creator><creator>Vohra, Lubna M</creator><general>SAGE Publications</general><general>Sage Publications Ltd</general><general>SAGE Publishing</general><scope>AFRWT</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QO</scope><scope>7RV</scope><scope>7SC</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AYAGU</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>KB0</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0S</scope><scope>M7P</scope><scope>NAPCQ</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6386-4047</orcidid></search><sort><creationdate>20240101</creationdate><title>Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review</title><author>Mooghal, Mehwish ; Nasir, Saad ; Arif, Aiman ; Khan, Wajiha ; Rashid, Yasmin Abdul ; Vohra, Lubna M</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c415t-27bb17f15f5fd5f89c1a425585d4c9a372aca17b83dea42abe35deb821f703bf3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>Breast cancer</topic><topic>Health care</topic><topic>Machine learning</topic><topic>Narratives</topic><topic>Neural networks</topic><topic>Original Research</topic><topic>Survival</topic><topic>Technology transfer</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Mooghal, Mehwish</creatorcontrib><creatorcontrib>Nasir, Saad</creatorcontrib><creatorcontrib>Arif, Aiman</creatorcontrib><creatorcontrib>Khan, Wajiha</creatorcontrib><creatorcontrib>Rashid, Yasmin Abdul</creatorcontrib><creatorcontrib>Vohra, Lubna M</creatorcontrib><collection>Sage Journals GOLD Open Access 2024</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Nursing &amp; Allied Health Database</collection><collection>Computer and Information Systems Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>Australia &amp; New Zealand Database</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Nursing &amp; Allied Health Database (Alumni Edition)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Biological Sciences</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Biological Science Database</collection><collection>Nursing &amp; Allied Health Premium</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Cancer informatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Mooghal, Mehwish</au><au>Nasir, Saad</au><au>Arif, Aiman</au><au>Khan, Wajiha</au><au>Rashid, Yasmin Abdul</au><au>Vohra, Lubna M</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review</atitle><jtitle>Cancer informatics</jtitle><addtitle>Cancer Inform</addtitle><date>2024-01-01</date><risdate>2024</risdate><volume>23</volume><spage>11769351241272389</spage><pages>11769351241272389-</pages><issn>1176-9351</issn><eissn>1176-9351</eissn><abstract>This narrative review explores the burgeoning field of Artificial Intelligence (AI)-driven Breast Cancer (BC) survival prediction, emphasizing the transformative impact on patient care. From machine learning to deep neural networks, diverse models demonstrate the potential to refine prognosis accuracy and tailor treatment strategies. The literature underscores the need for clinician integration and addresses challenges of model generalizability and ethical considerations. Crucially, AI’s promise extends to Low- and Middle-Income Countries (LMICs), presenting an opportunity to bridge healthcare disparities. Collaborative efforts in research, technology transfer, and education are essential to empower healthcare professionals in LMICs. As we navigate this frontier, AI emerges not only as a technological advancement but as a guiding light toward personalized, accessible BC care, marking a significant stride in the global fight against this formidable disease.</abstract><cop>London, England</cop><pub>SAGE Publications</pub><pmid>39483314</pmid><doi>10.1177/11769351241272389</doi><orcidid>https://orcid.org/0000-0002-6386-4047</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1176-9351
ispartof Cancer informatics, 2024-01, Vol.23, p.11769351241272389
issn 1176-9351
1176-9351
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_112e6c4e14824f309198406f73407b04
source Publicly Available Content Database; Sage Journals GOLD Open Access 2024; PubMed Central
subjects Artificial intelligence
Artificial neural networks
Breast cancer
Health care
Machine learning
Narratives
Neural networks
Original Research
Survival
Technology transfer
title Innovations in Artificial Intelligence-Driven Breast Cancer Survival Prediction: A Narrative Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-27T23%3A52%3A57IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Innovations%20in%20Artificial%20Intelligence-Driven%20Breast%20Cancer%20Survival%20Prediction:%20A%20Narrative%20Review&rft.jtitle=Cancer%20informatics&rft.au=Mooghal,%20Mehwish&rft.date=2024-01-01&rft.volume=23&rft.spage=11769351241272389&rft.pages=11769351241272389-&rft.issn=1176-9351&rft.eissn=1176-9351&rft_id=info:doi/10.1177/11769351241272389&rft_dat=%3Cproquest_doaj_%3E3150156475%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c415t-27bb17f15f5fd5f89c1a425585d4c9a372aca17b83dea42abe35deb821f703bf3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3150156475&rft_id=info:pmid/39483314&rft_sage_id=10.1177_11769351241272389&rfr_iscdi=true