Loading…

Predictive Maintenance in the Automotive Sector: A Literature Review

With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prev...

Full description

Saved in:
Bibliographic Details
Published in:Mathematical and computational applications 2022-02, Vol.27 (1), p.2
Main Authors: Arena, Fabio, Collotta, Mario, Luca, Liliana, Ruggieri, Marianna, Termine, Francesco Gaetano
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3
cites cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3
container_end_page
container_issue 1
container_start_page 2
container_title Mathematical and computational applications
container_volume 27
creator Arena, Fabio
Collotta, Mario
Luca, Liliana
Ruggieri, Marianna
Termine, Francesco Gaetano
description With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.
doi_str_mv 10.3390/mca27010002
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557</doaj_id><sourcerecordid>2632938926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWGqf_AMLPko1103iW6m3QkXx8hyyyaymtJuazVb8926tSJ_OMHP45nAQOiX4gjGNL1fOUokJxpgeoAGlWo6V5PJwbz5Go7ZdbB2EY4rxAF0_JfDB5bCB4sGGJkNjGwdFaIr8AcWky3EVf68v4HJMV8WkmIcMyeYuQfEMmwBfJ-iotssWRn86RG-3N6_T-_H88W42nczHjmqex0SWnKuyFlXlaiWJkqLWvnRSW8CWUlXbPr4nvdljQYEpxqvSu6oUrGLKsyGa7bg-2oVZp7Cy6dtEG8zvIqZ3Y1MObgmGECaAO-0wl5x4poTQvOfX0uFKCNmzznasdYqfHbTZLGKXmj6-oSWjmind6xCd71wuxbZNUP9_JdhsWzd7rbMf47RyEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632938926</pqid></control><display><type>article</type><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</creator><creatorcontrib>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</creatorcontrib><description>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</description><identifier>ISSN: 2297-8747</identifier><identifier>ISSN: 1300-686X</identifier><identifier>EISSN: 2297-8747</identifier><identifier>DOI: 10.3390/mca27010002</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accident prevention ; Artificial intelligence ; Automobile industry ; Big Data ; Capital costs ; Condition monitoring ; Cost control ; data-driven methods ; Decision making ; Failure ; Industry 4.0 ; Internet of Things ; Literature reviews ; Machine learning ; machine learning algorithms ; Maintenance costs ; Mechanical properties ; Predictive maintenance ; Preventive maintenance ; Productivity ; Repair &amp; maintenance ; Sensors ; Statistical inference ; Vibration monitoring</subject><ispartof>Mathematical and computational applications, 2022-02, Vol.27 (1), p.2</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</citedby><cites>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</cites><orcidid>0000-0002-6656-1797 ; 0000-0002-3265-3984 ; 0000-0003-0207-9966 ; 0000-0003-4993-0818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632938926/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632938926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Arena, Fabio</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Luca, Liliana</creatorcontrib><creatorcontrib>Ruggieri, Marianna</creatorcontrib><creatorcontrib>Termine, Francesco Gaetano</creatorcontrib><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><title>Mathematical and computational applications</title><description>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</description><subject>Accident prevention</subject><subject>Artificial intelligence</subject><subject>Automobile industry</subject><subject>Big Data</subject><subject>Capital costs</subject><subject>Condition monitoring</subject><subject>Cost control</subject><subject>data-driven methods</subject><subject>Decision making</subject><subject>Failure</subject><subject>Industry 4.0</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning algorithms</subject><subject>Maintenance costs</subject><subject>Mechanical properties</subject><subject>Predictive maintenance</subject><subject>Preventive maintenance</subject><subject>Productivity</subject><subject>Repair &amp; maintenance</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Vibration monitoring</subject><issn>2297-8747</issn><issn>1300-686X</issn><issn>2297-8747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhYMoWGqf_AMLPko1103iW6m3QkXx8hyyyaymtJuazVb8926tSJ_OMHP45nAQOiX4gjGNL1fOUokJxpgeoAGlWo6V5PJwbz5Go7ZdbB2EY4rxAF0_JfDB5bCB4sGGJkNjGwdFaIr8AcWky3EVf68v4HJMV8WkmIcMyeYuQfEMmwBfJ-iotssWRn86RG-3N6_T-_H88W42nczHjmqex0SWnKuyFlXlaiWJkqLWvnRSW8CWUlXbPr4nvdljQYEpxqvSu6oUrGLKsyGa7bg-2oVZp7Cy6dtEG8zvIqZ3Y1MObgmGECaAO-0wl5x4poTQvOfX0uFKCNmzznasdYqfHbTZLGKXmj6-oSWjmind6xCd71wuxbZNUP9_JdhsWzd7rbMf47RyEw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Arena, Fabio</creator><creator>Collotta, Mario</creator><creator>Luca, Liliana</creator><creator>Ruggieri, Marianna</creator><creator>Termine, Francesco Gaetano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6656-1797</orcidid><orcidid>https://orcid.org/0000-0002-3265-3984</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0003-4993-0818</orcidid></search><sort><creationdate>20220201</creationdate><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><author>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident prevention</topic><topic>Artificial intelligence</topic><topic>Automobile industry</topic><topic>Big Data</topic><topic>Capital costs</topic><topic>Condition monitoring</topic><topic>Cost control</topic><topic>data-driven methods</topic><topic>Decision making</topic><topic>Failure</topic><topic>Industry 4.0</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning algorithms</topic><topic>Maintenance costs</topic><topic>Mechanical properties</topic><topic>Predictive maintenance</topic><topic>Preventive maintenance</topic><topic>Productivity</topic><topic>Repair &amp; maintenance</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arena, Fabio</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Luca, Liliana</creatorcontrib><creatorcontrib>Ruggieri, Marianna</creatorcontrib><creatorcontrib>Termine, Francesco Gaetano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical and computational applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arena, Fabio</au><au>Collotta, Mario</au><au>Luca, Liliana</au><au>Ruggieri, Marianna</au><au>Termine, Francesco Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Maintenance in the Automotive Sector: A Literature Review</atitle><jtitle>Mathematical and computational applications</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>2</spage><pages>2-</pages><issn>2297-8747</issn><issn>1300-686X</issn><eissn>2297-8747</eissn><abstract>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mca27010002</doi><orcidid>https://orcid.org/0000-0002-6656-1797</orcidid><orcidid>https://orcid.org/0000-0002-3265-3984</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0003-4993-0818</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2297-8747
ispartof Mathematical and computational applications, 2022-02, Vol.27 (1), p.2
issn 2297-8747
1300-686X
2297-8747
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557
source Publicly Available Content Database; EZB Electronic Journals Library
subjects Accident prevention
Artificial intelligence
Automobile industry
Big Data
Capital costs
Condition monitoring
Cost control
data-driven methods
Decision making
Failure
Industry 4.0
Internet of Things
Literature reviews
Machine learning
machine learning algorithms
Maintenance costs
Mechanical properties
Predictive maintenance
Preventive maintenance
Productivity
Repair & maintenance
Sensors
Statistical inference
Vibration monitoring
title Predictive Maintenance in the Automotive Sector: A Literature Review
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Maintenance%20in%20the%20Automotive%20Sector:%20A%20Literature%20Review&rft.jtitle=Mathematical%20and%20computational%20applications&rft.au=Arena,%20Fabio&rft.date=2022-02-01&rft.volume=27&rft.issue=1&rft.spage=2&rft.pages=2-&rft.issn=2297-8747&rft.eissn=2297-8747&rft_id=info:doi/10.3390/mca27010002&rft_dat=%3Cproquest_doaj_%3E2632938926%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632938926&rft_id=info:pmid/&rfr_iscdi=true