Loading…
Predictive Maintenance in the Automotive Sector: A Literature Review
With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prev...
Saved in:
Published in: | Mathematical and computational applications 2022-02, Vol.27 (1), p.2 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3 |
---|---|
cites | cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3 |
container_end_page | |
container_issue | 1 |
container_start_page | 2 |
container_title | Mathematical and computational applications |
container_volume | 27 |
creator | Arena, Fabio Collotta, Mario Luca, Liliana Ruggieri, Marianna Termine, Francesco Gaetano |
description | With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance. |
doi_str_mv | 10.3390/mca27010002 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557</doaj_id><sourcerecordid>2632938926</sourcerecordid><originalsourceid>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</originalsourceid><addsrcrecordid>eNpNkFtLAzEQhYMoWGqf_AMLPko1103iW6m3QkXx8hyyyaymtJuazVb8926tSJ_OMHP45nAQOiX4gjGNL1fOUokJxpgeoAGlWo6V5PJwbz5Go7ZdbB2EY4rxAF0_JfDB5bCB4sGGJkNjGwdFaIr8AcWky3EVf68v4HJMV8WkmIcMyeYuQfEMmwBfJ-iotssWRn86RG-3N6_T-_H88W42nczHjmqex0SWnKuyFlXlaiWJkqLWvnRSW8CWUlXbPr4nvdljQYEpxqvSu6oUrGLKsyGa7bg-2oVZp7Cy6dtEG8zvIqZ3Y1MObgmGECaAO-0wl5x4poTQvOfX0uFKCNmzznasdYqfHbTZLGKXmj6-oSWjmind6xCd71wuxbZNUP9_JdhsWzd7rbMf47RyEw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2632938926</pqid></control><display><type>article</type><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><source>Publicly Available Content Database</source><source>EZB Electronic Journals Library</source><creator>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</creator><creatorcontrib>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</creatorcontrib><description>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</description><identifier>ISSN: 2297-8747</identifier><identifier>ISSN: 1300-686X</identifier><identifier>EISSN: 2297-8747</identifier><identifier>DOI: 10.3390/mca27010002</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accident prevention ; Artificial intelligence ; Automobile industry ; Big Data ; Capital costs ; Condition monitoring ; Cost control ; data-driven methods ; Decision making ; Failure ; Industry 4.0 ; Internet of Things ; Literature reviews ; Machine learning ; machine learning algorithms ; Maintenance costs ; Mechanical properties ; Predictive maintenance ; Preventive maintenance ; Productivity ; Repair & maintenance ; Sensors ; Statistical inference ; Vibration monitoring</subject><ispartof>Mathematical and computational applications, 2022-02, Vol.27 (1), p.2</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</citedby><cites>FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</cites><orcidid>0000-0002-6656-1797 ; 0000-0002-3265-3984 ; 0000-0003-0207-9966 ; 0000-0003-4993-0818</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2632938926/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2632938926?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Arena, Fabio</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Luca, Liliana</creatorcontrib><creatorcontrib>Ruggieri, Marianna</creatorcontrib><creatorcontrib>Termine, Francesco Gaetano</creatorcontrib><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><title>Mathematical and computational applications</title><description>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</description><subject>Accident prevention</subject><subject>Artificial intelligence</subject><subject>Automobile industry</subject><subject>Big Data</subject><subject>Capital costs</subject><subject>Condition monitoring</subject><subject>Cost control</subject><subject>data-driven methods</subject><subject>Decision making</subject><subject>Failure</subject><subject>Industry 4.0</subject><subject>Internet of Things</subject><subject>Literature reviews</subject><subject>Machine learning</subject><subject>machine learning algorithms</subject><subject>Maintenance costs</subject><subject>Mechanical properties</subject><subject>Predictive maintenance</subject><subject>Preventive maintenance</subject><subject>Productivity</subject><subject>Repair & maintenance</subject><subject>Sensors</subject><subject>Statistical inference</subject><subject>Vibration monitoring</subject><issn>2297-8747</issn><issn>1300-686X</issn><issn>2297-8747</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkFtLAzEQhYMoWGqf_AMLPko1103iW6m3QkXx8hyyyaymtJuazVb8926tSJ_OMHP45nAQOiX4gjGNL1fOUokJxpgeoAGlWo6V5PJwbz5Go7ZdbB2EY4rxAF0_JfDB5bCB4sGGJkNjGwdFaIr8AcWky3EVf68v4HJMV8WkmIcMyeYuQfEMmwBfJ-iotssWRn86RG-3N6_T-_H88W42nczHjmqex0SWnKuyFlXlaiWJkqLWvnRSW8CWUlXbPr4nvdljQYEpxqvSu6oUrGLKsyGa7bg-2oVZp7Cy6dtEG8zvIqZ3Y1MObgmGECaAO-0wl5x4poTQvOfX0uFKCNmzznasdYqfHbTZLGKXmj6-oSWjmind6xCd71wuxbZNUP9_JdhsWzd7rbMf47RyEw</recordid><startdate>20220201</startdate><enddate>20220201</enddate><creator>Arena, Fabio</creator><creator>Collotta, Mario</creator><creator>Luca, Liliana</creator><creator>Ruggieri, Marianna</creator><creator>Termine, Francesco Gaetano</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6656-1797</orcidid><orcidid>https://orcid.org/0000-0002-3265-3984</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0003-4993-0818</orcidid></search><sort><creationdate>20220201</creationdate><title>Predictive Maintenance in the Automotive Sector: A Literature Review</title><author>Arena, Fabio ; Collotta, Mario ; Luca, Liliana ; Ruggieri, Marianna ; Termine, Francesco Gaetano</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>Accident prevention</topic><topic>Artificial intelligence</topic><topic>Automobile industry</topic><topic>Big Data</topic><topic>Capital costs</topic><topic>Condition monitoring</topic><topic>Cost control</topic><topic>data-driven methods</topic><topic>Decision making</topic><topic>Failure</topic><topic>Industry 4.0</topic><topic>Internet of Things</topic><topic>Literature reviews</topic><topic>Machine learning</topic><topic>machine learning algorithms</topic><topic>Maintenance costs</topic><topic>Mechanical properties</topic><topic>Predictive maintenance</topic><topic>Preventive maintenance</topic><topic>Productivity</topic><topic>Repair & maintenance</topic><topic>Sensors</topic><topic>Statistical inference</topic><topic>Vibration monitoring</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Arena, Fabio</creatorcontrib><creatorcontrib>Collotta, Mario</creatorcontrib><creatorcontrib>Luca, Liliana</creatorcontrib><creatorcontrib>Ruggieri, Marianna</creatorcontrib><creatorcontrib>Termine, Francesco Gaetano</creatorcontrib><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Mathematical and computational applications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Arena, Fabio</au><au>Collotta, Mario</au><au>Luca, Liliana</au><au>Ruggieri, Marianna</au><au>Termine, Francesco Gaetano</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predictive Maintenance in the Automotive Sector: A Literature Review</atitle><jtitle>Mathematical and computational applications</jtitle><date>2022-02-01</date><risdate>2022</risdate><volume>27</volume><issue>1</issue><spage>2</spage><pages>2-</pages><issn>2297-8747</issn><issn>1300-686X</issn><eissn>2297-8747</eissn><abstract>With the rapid advancement of sensor and network technology, there has been a notable increase in the availability of condition-monitoring data such as vibration, temperature, pressure, voltage, and other electrical and mechanical parameters. With the introduction of big data, it is possible to prevent potential failures and estimate the remaining useful life of the equipment by developing advanced mathematical models and artificial intelligence (AI) techniques. These approaches allow taking maintenance actions quickly and appropriately. In this scenario, this paper presents a systematic literature review of statistical inference approaches, stochastic methods, and AI techniques for predictive maintenance in the automotive sector. It provides a summary on these approaches, their main results, challenges, and opportunities, and it supports new research works for vehicle predictive maintenance.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/mca27010002</doi><orcidid>https://orcid.org/0000-0002-6656-1797</orcidid><orcidid>https://orcid.org/0000-0002-3265-3984</orcidid><orcidid>https://orcid.org/0000-0003-0207-9966</orcidid><orcidid>https://orcid.org/0000-0003-4993-0818</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2297-8747 |
ispartof | Mathematical and computational applications, 2022-02, Vol.27 (1), p.2 |
issn | 2297-8747 1300-686X 2297-8747 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1135e4c9c04741d385594fa0f7c0b557 |
source | Publicly Available Content Database; EZB Electronic Journals Library |
subjects | Accident prevention Artificial intelligence Automobile industry Big Data Capital costs Condition monitoring Cost control data-driven methods Decision making Failure Industry 4.0 Internet of Things Literature reviews Machine learning machine learning algorithms Maintenance costs Mechanical properties Predictive maintenance Preventive maintenance Productivity Repair & maintenance Sensors Statistical inference Vibration monitoring |
title | Predictive Maintenance in the Automotive Sector: A Literature Review |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-30T00%3A02%3A15IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predictive%20Maintenance%20in%20the%20Automotive%20Sector:%20A%20Literature%20Review&rft.jtitle=Mathematical%20and%20computational%20applications&rft.au=Arena,%20Fabio&rft.date=2022-02-01&rft.volume=27&rft.issue=1&rft.spage=2&rft.pages=2-&rft.issn=2297-8747&rft.eissn=2297-8747&rft_id=info:doi/10.3390/mca27010002&rft_dat=%3Cproquest_doaj_%3E2632938926%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c294t-1764486f5bbcf871875f9d6c79ae0a228fa010d1294d052e3834b6dcb653b38d3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2632938926&rft_id=info:pmid/&rfr_iscdi=true |