Loading…
Bionanofactory for green synthesis of collagen nanoparticles, characterization, optimization, in-vitro and in-vivo anticancer activities
Collagen nanoparticles (collagen-NPs) are promising biological polymer nanoparticles due to their exceptional biodegradability and biocompatibility. Collagen-NPs were bio-fabricated from pure marine collagen using the cell-free supernatant of a newly isolated strain, Streptomyces sp. strain NEAA-3....
Saved in:
Published in: | Scientific reports 2024-03, Vol.14 (1), p.6328-6328, Article 6328 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Collagen nanoparticles (collagen-NPs) are promising biological polymer nanoparticles due to their exceptional biodegradability and biocompatibility. Collagen-NPs were bio-fabricated from pure marine collagen using the cell-free supernatant of a newly isolated strain,
Streptomyces
sp. strain NEAA-3.
Streptomyces
sp. strain NEAA-3 was identified as
Streptomyces plicatus
strain NEAA-3 based on its cultural, morphological, physiological properties and 16S rRNA sequence analysis. The sequence data has been deposited under accession number OR501412.1 in the GenBank database. The face-centered central composite design (FCCD) was used to improve collagen-NPs biosynthesis. The maximum yield of collagen-NPs was 9.33 mg/mL with a collagen concentration of 10 mg/mL, an initial pH of 7, an incubation time of 72 h, and a temperature of 35 °C. Using the desirability function approach, the collagen-NPs biosynthesis obtained after FCCD optimization (9.53 mg/mL) was 3.92 times more than the collagen-NPs biosynthesis obtained before optimization process (2.43 mg/mL). The TEM analysis of collagen-NPs revealed hollow sphere nanoscale particles with an average diameter of 33.15 ± 10.02 nm. FTIR spectra confirmed the functional groups of the collagen, collagen-NPs and the cell-free supernatant that are essential for the efficient capping of collagen-NPs. The biosynthesized collagen-NPs exhibited antioxidant activity and anticancer activity against HeP-G2, MCF-7 and HCT116 cell lines. Collagen-NPs assessed as an effective drug loading carrier with methotrexate (MTX), a chemotherapeutic agent. The TEM analysis revealed that the average size of MTX-loaded collagen-NPs was 35.4 ± 8.9 nm. The percentages of drug loading (DL%) and encapsulation efficiency (EE%) were respectively 22.67 and 45.81%. |
---|---|
ISSN: | 2045-2322 2045-2322 |
DOI: | 10.1038/s41598-024-56064-8 |