Loading…

Engineering artificial photosynthetic life-forms through endosymbiosis

The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthet...

Full description

Saved in:
Bibliographic Details
Published in:Nature communications 2022-04, Vol.13 (1), p.2254-2254, Article 2254
Main Authors: Cournoyer, Jason E., Altman, Sarah D., Gao, Yang-le, Wallace, Catherine L., Zhang, Dianwen, Lo, Guo-Hsuen, Haskin, Noah T., Mehta, Angad P.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The evolutionary origin of the photosynthetic eukaryotes drastically altered the evolution of complex lifeforms and impacted global ecology. The endosymbiotic theory suggests that photosynthetic eukaryotes evolved due to endosymbiosis between non-photosynthetic eukaryotic host cells and photosynthetic cyanobacterial or algal endosymbionts. The photosynthetic endosymbionts, propagating within the cytoplasm of the host cells, evolved, and eventually transformed into chloroplasts. Despite the fundamental importance of this evolutionary event, we have minimal understanding of this remarkable evolutionary transformation. Here, we design and engineer artificial, genetically tractable, photosynthetic endosymbiosis between photosynthetic cyanobacteria and budding yeasts. We engineer various mutants of model photosynthetic cyanobacteria as endosymbionts within yeast cells where, the engineered cyanobacteria perform bioenergetic functions to support the growth of yeast cells under defined photosynthetic conditions. We anticipate that these genetically tractable endosymbiotic platforms can be used for evolutionary studies, particularly related to organelle evolution, and also for synthetic biology applications. The endosymbiotic theory posits that chloroplasts in eukaryotes arise from bacterial endosymbionts. Here, the authors engineer the yeast/cyanobacteria chimeras and show that the engineered cyanobacteria perform chloroplast-like functions to support the growth of yeast cells under photosynthetic conditions.
ISSN:2041-1723
2041-1723
DOI:10.1038/s41467-022-29961-7