Loading…
Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems
Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian par...
Saved in:
Published in: | Entropy (Basel, Switzerland) Switzerland), 2018-07, Vol.20 (8), p.569 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393 |
---|---|
cites | cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393 |
container_end_page | |
container_issue | 8 |
container_start_page | 569 |
container_title | Entropy (Basel, Switzerland) |
container_volume | 20 |
creator | Wang, Peng Li, Ge Peng, Yong Ju, Rusheng |
description | Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm. |
doi_str_mv | 10.3390/e20080569 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f</doaj_id><sourcerecordid>2466776403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</originalsourceid><addsrcrecordid>eNpVkU1vFDEMhiMEoh9w4B_kCIcFJ5nJxwWpVC1dqRKIhQOnyJPx7KaamZQki7T_noGtKnqyZb96_L4yY28EvFfKwQeSABZa7Z6xUwHOrRoF8Py__oSdlXIHIJUU-iU7UUrqVrfmlP38hnOfJn4d51iJb6jyT1io518x40SVMr8qNU5YY5r5xbhNOdbdxIeU-bqnucbhEOct39QUdrgoA98cSqWpvGIvBhwLvX6o5-zH9dX3y5vV7ZfP68uL21VohK0rB8E2NATbAw6CDBoJmjrhCLEPDSiwy8oo7HrVQofYiU7LNtjQoA3KqXO2PnL7hHf-Pi9e88EnjP7fIOWtx7z4GskLYYMd5CCd7RoHxnWybVwwISgw4IaF9fHIut93E_VhyZdxfAJ9upnjzm_Tb29aocCpBfD2AZDTrz2V6qdYAo0jzpT2xctGa2P0EmuRvjtKQ06lZBoezwjwf9_qH9-q_gBzYJRG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466776403</pqid></control><display><type>article</type><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</creator><creatorcontrib>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</creatorcontrib><description>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e20080569</identifier><identifier>PMID: 33265657</identifier><language>eng</language><publisher>MDPI</publisher><subject>importance sampling ; Markov Chain Monte Carlo (MCMC) ; parameter estimation ; Probability Hypothesis Density (PHD) ; Random Finite Set (RFS) ; simulated tempering</subject><ispartof>Entropy (Basel, Switzerland), 2018-07, Vol.20 (8), p.569</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</citedby><cites>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</cites><orcidid>0000-0003-0871-5214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513093/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513093/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,36992,53769,53771</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ju, Rusheng</creatorcontrib><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><title>Entropy (Basel, Switzerland)</title><description>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</description><subject>importance sampling</subject><subject>Markov Chain Monte Carlo (MCMC)</subject><subject>parameter estimation</subject><subject>Probability Hypothesis Density (PHD)</subject><subject>Random Finite Set (RFS)</subject><subject>simulated tempering</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vFDEMhiMEoh9w4B_kCIcFJ5nJxwWpVC1dqRKIhQOnyJPx7KaamZQki7T_noGtKnqyZb96_L4yY28EvFfKwQeSABZa7Z6xUwHOrRoF8Py__oSdlXIHIJUU-iU7UUrqVrfmlP38hnOfJn4d51iJb6jyT1io518x40SVMr8qNU5YY5r5xbhNOdbdxIeU-bqnucbhEOct39QUdrgoA98cSqWpvGIvBhwLvX6o5-zH9dX3y5vV7ZfP68uL21VohK0rB8E2NATbAw6CDBoJmjrhCLEPDSiwy8oo7HrVQofYiU7LNtjQoA3KqXO2PnL7hHf-Pi9e88EnjP7fIOWtx7z4GskLYYMd5CCd7RoHxnWybVwwISgw4IaF9fHIut93E_VhyZdxfAJ9upnjzm_Tb29aocCpBfD2AZDTrz2V6qdYAo0jzpT2xctGa2P0EmuRvjtKQ06lZBoezwjwf9_qH9-q_gBzYJRG</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Wang, Peng</creator><creator>Li, Ge</creator><creator>Peng, Yong</creator><creator>Ju, Rusheng</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0871-5214</orcidid></search><sort><creationdate>20180731</creationdate><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><author>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>importance sampling</topic><topic>Markov Chain Monte Carlo (MCMC)</topic><topic>parameter estimation</topic><topic>Probability Hypothesis Density (PHD)</topic><topic>Random Finite Set (RFS)</topic><topic>simulated tempering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ju, Rusheng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Li, Ge</au><au>Peng, Yong</au><au>Ju, Rusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>20</volume><issue>8</issue><spage>569</spage><pages>569-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</abstract><pub>MDPI</pub><pmid>33265657</pmid><doi>10.3390/e20080569</doi><orcidid>https://orcid.org/0000-0003-0871-5214</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1099-4300 |
ispartof | Entropy (Basel, Switzerland), 2018-07, Vol.20 (8), p.569 |
issn | 1099-4300 1099-4300 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central |
subjects | importance sampling Markov Chain Monte Carlo (MCMC) parameter estimation Probability Hypothesis Density (PHD) Random Finite Set (RFS) simulated tempering |
title | Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Finite%20Set%20Based%20Parameter%20Estimation%20Algorithm%20for%20Identifying%20Stochastic%20Systems&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Wang,%20Peng&rft.date=2018-07-31&rft.volume=20&rft.issue=8&rft.spage=569&rft.pages=569-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e20080569&rft_dat=%3Cproquest_doaj_%3E2466776403%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466776403&rft_id=info:pmid/33265657&rfr_iscdi=true |