Loading…

Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems

Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian par...

Full description

Saved in:
Bibliographic Details
Published in:Entropy (Basel, Switzerland) Switzerland), 2018-07, Vol.20 (8), p.569
Main Authors: Wang, Peng, Li, Ge, Peng, Yong, Ju, Rusheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393
cites cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393
container_end_page
container_issue 8
container_start_page 569
container_title Entropy (Basel, Switzerland)
container_volume 20
creator Wang, Peng
Li, Ge
Peng, Yong
Ju, Rusheng
description Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.
doi_str_mv 10.3390/e20080569
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f</doaj_id><sourcerecordid>2466776403</sourcerecordid><originalsourceid>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</originalsourceid><addsrcrecordid>eNpVkU1vFDEMhiMEoh9w4B_kCIcFJ5nJxwWpVC1dqRKIhQOnyJPx7KaamZQki7T_noGtKnqyZb96_L4yY28EvFfKwQeSABZa7Z6xUwHOrRoF8Py__oSdlXIHIJUU-iU7UUrqVrfmlP38hnOfJn4d51iJb6jyT1io518x40SVMr8qNU5YY5r5xbhNOdbdxIeU-bqnucbhEOct39QUdrgoA98cSqWpvGIvBhwLvX6o5-zH9dX3y5vV7ZfP68uL21VohK0rB8E2NATbAw6CDBoJmjrhCLEPDSiwy8oo7HrVQofYiU7LNtjQoA3KqXO2PnL7hHf-Pi9e88EnjP7fIOWtx7z4GskLYYMd5CCd7RoHxnWybVwwISgw4IaF9fHIut93E_VhyZdxfAJ9upnjzm_Tb29aocCpBfD2AZDTrz2V6qdYAo0jzpT2xctGa2P0EmuRvjtKQ06lZBoezwjwf9_qH9-q_gBzYJRG</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2466776403</pqid></control><display><type>article</type><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><source>PubMed Central</source><creator>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</creator><creatorcontrib>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</creatorcontrib><description>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</description><identifier>ISSN: 1099-4300</identifier><identifier>EISSN: 1099-4300</identifier><identifier>DOI: 10.3390/e20080569</identifier><identifier>PMID: 33265657</identifier><language>eng</language><publisher>MDPI</publisher><subject>importance sampling ; Markov Chain Monte Carlo (MCMC) ; parameter estimation ; Probability Hypothesis Density (PHD) ; Random Finite Set (RFS) ; simulated tempering</subject><ispartof>Entropy (Basel, Switzerland), 2018-07, Vol.20 (8), p.569</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</citedby><cites>FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</cites><orcidid>0000-0003-0871-5214</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513093/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC7513093/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,860,881,2095,27903,27904,36992,53769,53771</link.rule.ids></links><search><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ju, Rusheng</creatorcontrib><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><title>Entropy (Basel, Switzerland)</title><description>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</description><subject>importance sampling</subject><subject>Markov Chain Monte Carlo (MCMC)</subject><subject>parameter estimation</subject><subject>Probability Hypothesis Density (PHD)</subject><subject>Random Finite Set (RFS)</subject><subject>simulated tempering</subject><issn>1099-4300</issn><issn>1099-4300</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVkU1vFDEMhiMEoh9w4B_kCIcFJ5nJxwWpVC1dqRKIhQOnyJPx7KaamZQki7T_noGtKnqyZb96_L4yY28EvFfKwQeSABZa7Z6xUwHOrRoF8Py__oSdlXIHIJUU-iU7UUrqVrfmlP38hnOfJn4d51iJb6jyT1io518x40SVMr8qNU5YY5r5xbhNOdbdxIeU-bqnucbhEOct39QUdrgoA98cSqWpvGIvBhwLvX6o5-zH9dX3y5vV7ZfP68uL21VohK0rB8E2NATbAw6CDBoJmjrhCLEPDSiwy8oo7HrVQofYiU7LNtjQoA3KqXO2PnL7hHf-Pi9e88EnjP7fIOWtx7z4GskLYYMd5CCd7RoHxnWybVwwISgw4IaF9fHIut93E_VhyZdxfAJ9upnjzm_Tb29aocCpBfD2AZDTrz2V6qdYAo0jzpT2xctGa2P0EmuRvjtKQ06lZBoezwjwf9_qH9-q_gBzYJRG</recordid><startdate>20180731</startdate><enddate>20180731</enddate><creator>Wang, Peng</creator><creator>Li, Ge</creator><creator>Peng, Yong</creator><creator>Ju, Rusheng</creator><general>MDPI</general><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0871-5214</orcidid></search><sort><creationdate>20180731</creationdate><title>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</title><author>Wang, Peng ; Li, Ge ; Peng, Yong ; Ju, Rusheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>importance sampling</topic><topic>Markov Chain Monte Carlo (MCMC)</topic><topic>parameter estimation</topic><topic>Probability Hypothesis Density (PHD)</topic><topic>Random Finite Set (RFS)</topic><topic>simulated tempering</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Wang, Peng</creatorcontrib><creatorcontrib>Li, Ge</creatorcontrib><creatorcontrib>Peng, Yong</creatorcontrib><creatorcontrib>Ju, Rusheng</creatorcontrib><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Entropy (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Wang, Peng</au><au>Li, Ge</au><au>Peng, Yong</au><au>Ju, Rusheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems</atitle><jtitle>Entropy (Basel, Switzerland)</jtitle><date>2018-07-31</date><risdate>2018</risdate><volume>20</volume><issue>8</issue><spage>569</spage><pages>569-</pages><issn>1099-4300</issn><eissn>1099-4300</eissn><abstract>Parameter estimation is one of the key technologies for system identification. The Bayesian parameter estimation algorithms are very important for identifying stochastic systems. In this paper, a random finite set based algorithm is proposed to overcome the disadvantages of the existing Bayesian parameter estimation algorithms. It can estimate the unknown parameters of the stochastic system which consists of a varying number of constituent elements by using the measurements disturbed by false detections, missed detections and noises. The models used for parameter estimation are constructed by using random finite set. Based on the proposed system model and measurement model, the key principles and formula derivation of the proposed algorithm are detailed. Then, the implementation of the algorithm is presented by using sequential Monte Carlo based Probability Hypothesis Density (PHD) filter and simulated tempering based importance sampling. Finally, the experiments of systematic errors estimation of multiple sensors are provided to prove the main advantages of the proposed algorithm. The sensitivity analysis is carried out to further study the mechanism of the algorithm. The experimental results verify the superiority of the proposed algorithm.</abstract><pub>MDPI</pub><pmid>33265657</pmid><doi>10.3390/e20080569</doi><orcidid>https://orcid.org/0000-0003-0871-5214</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1099-4300
ispartof Entropy (Basel, Switzerland), 2018-07, Vol.20 (8), p.569
issn 1099-4300
1099-4300
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_118c8f2f298b49079b2549c7cc30709f
source Publicly Available Content Database; DOAJ Directory of Open Access Journals; PubMed Central
subjects importance sampling
Markov Chain Monte Carlo (MCMC)
parameter estimation
Probability Hypothesis Density (PHD)
Random Finite Set (RFS)
simulated tempering
title Random Finite Set Based Parameter Estimation Algorithm for Identifying Stochastic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-23T21%3A20%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Random%20Finite%20Set%20Based%20Parameter%20Estimation%20Algorithm%20for%20Identifying%20Stochastic%20Systems&rft.jtitle=Entropy%20(Basel,%20Switzerland)&rft.au=Wang,%20Peng&rft.date=2018-07-31&rft.volume=20&rft.issue=8&rft.spage=569&rft.pages=569-&rft.issn=1099-4300&rft.eissn=1099-4300&rft_id=info:doi/10.3390/e20080569&rft_dat=%3Cproquest_doaj_%3E2466776403%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c418t-90c84efc8d0af1e7a7206eb19eaadc403088d073abd350baab1b625c8c4a8c393%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2466776403&rft_id=info:pmid/33265657&rfr_iscdi=true