Loading…

Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator

Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2014-10, Vol.14 (11), p.20235-20244
Main Authors: Fuchiwaki, Yusuke, Nagai, Hidenori
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3
cites cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3
container_end_page 20244
container_issue 11
container_start_page 20235
container_title Sensors (Basel, Switzerland)
container_volume 14
creator Fuchiwaki, Yusuke
Nagai, Hidenori
description Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.
doi_str_mv 10.3390/s141120235
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e</doaj_id><sourcerecordid>1618827569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4QegSFwQUsCfsX1BQlULlSpxAM7WxJlks3LixXaK9t_jZUtpOXGyPX70aGb0VtVLSt5xbsj7RAWljDAuH1WnVDDRaMbI43v3k-pZSltSEM710-qESS6JJPq0gq957fd1GGqo_fRjnfp659exGXz4WecNxhl87fbOT8tYZ3SbpUBYr-nwhlKZdxghrxHrMUI_4ZKbDhL2Nbi8Qg7xefVkAJ_wxe15Vn2_vPh2_rm5_vLp6vzjdeNaQXPjCErKpaZgCBWmd7LTQqDpTN8NCAhMAdfKdYZ3yAyynoIGwtFR3hru-Fl1dfT2AbZ2F6cZ4t4GmOzvQoijhZgn59FSaih1ymmhWjG4AbjQEojsCB0GqrC4Phxdu7WbsXdlqgj-gfThzzJt7BhurGDKCGWK4M2tIIayr5TtPCWH3sOCYU2Wti0hquVM_AdKtWZKtgfr63_QbVjjUrZaKC6VJETzQr09Ui6GlCIOd31TYg-BsX8DU-BX9ye9Q_8khP8CTeq7Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635750083</pqid></control><display><type>article</type><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fuchiwaki, Yusuke ; Nagai, Hidenori</creator><creatorcontrib>Fuchiwaki, Yusuke ; Nagai, Hidenori</creatorcontrib><description>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s141120235</identifier><identifier>PMID: 25350508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Algorithms ; Aluminum ; Amplification ; Automation ; Continuous flow ; Cooling ; DNA amplification ; Equipment Design ; Equipment Failure Analysis ; Feedback ; Heat ; Heating - instrumentation ; Influenza ; Liquids ; Medical research ; Microchannels ; Microfluidic Analytical Techniques - instrumentation ; microfluidics ; Oscillometry - instrumentation ; PCR ; Plug flow ; Polymerase Chain Reaction - instrumentation ; Reagents ; Sensors ; Temperature gradient ; Thermal cycling ; Thermography - instrumentation ; Transducers</subject><ispartof>Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20235-20244</ispartof><rights>Copyright MDPI AG 2014</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</citedby><cites>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1635750083/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1635750083?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25350508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchiwaki, Yusuke</creatorcontrib><creatorcontrib>Nagai, Hidenori</creatorcontrib><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Aluminum</subject><subject>Amplification</subject><subject>Automation</subject><subject>Continuous flow</subject><subject>Cooling</subject><subject>DNA amplification</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>Heat</subject><subject>Heating - instrumentation</subject><subject>Influenza</subject><subject>Liquids</subject><subject>Medical research</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>microfluidics</subject><subject>Oscillometry - instrumentation</subject><subject>PCR</subject><subject>Plug flow</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Reagents</subject><subject>Sensors</subject><subject>Temperature gradient</subject><subject>Thermal cycling</subject><subject>Thermography - instrumentation</subject><subject>Transducers</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4QegSFwQUsCfsX1BQlULlSpxAM7WxJlks3LixXaK9t_jZUtpOXGyPX70aGb0VtVLSt5xbsj7RAWljDAuH1WnVDDRaMbI43v3k-pZSltSEM710-qESS6JJPq0gq957fd1GGqo_fRjnfp659exGXz4WecNxhl87fbOT8tYZ3SbpUBYr-nwhlKZdxghrxHrMUI_4ZKbDhL2Nbi8Qg7xefVkAJ_wxe15Vn2_vPh2_rm5_vLp6vzjdeNaQXPjCErKpaZgCBWmd7LTQqDpTN8NCAhMAdfKdYZ3yAyynoIGwtFR3hru-Fl1dfT2AbZ2F6cZ4t4GmOzvQoijhZgn59FSaih1ymmhWjG4AbjQEojsCB0GqrC4Phxdu7WbsXdlqgj-gfThzzJt7BhurGDKCGWK4M2tIIayr5TtPCWH3sOCYU2Wti0hquVM_AdKtWZKtgfr63_QbVjjUrZaKC6VJETzQr09Ui6GlCIOd31TYg-BsX8DU-BX9ye9Q_8khP8CTeq7Uw</recordid><startdate>20141027</startdate><enddate>20141027</enddate><creator>Fuchiwaki, Yusuke</creator><creator>Nagai, Hidenori</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141027</creationdate><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><author>Fuchiwaki, Yusuke ; Nagai, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Aluminum</topic><topic>Amplification</topic><topic>Automation</topic><topic>Continuous flow</topic><topic>Cooling</topic><topic>DNA amplification</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>Heat</topic><topic>Heating - instrumentation</topic><topic>Influenza</topic><topic>Liquids</topic><topic>Medical research</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>microfluidics</topic><topic>Oscillometry - instrumentation</topic><topic>PCR</topic><topic>Plug flow</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Reagents</topic><topic>Sensors</topic><topic>Temperature gradient</topic><topic>Thermal cycling</topic><topic>Thermography - instrumentation</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchiwaki, Yusuke</creatorcontrib><creatorcontrib>Nagai, Hidenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics &amp; Communications Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchiwaki, Yusuke</au><au>Nagai, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2014-10-27</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>20235</spage><epage>20244</epage><pages>20235-20244</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>25350508</pmid><doi>10.3390/s141120235</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1424-8220
ispartof Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20235-20244
issn 1424-8220
1424-8220
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e
source Publicly Available Content Database; PubMed Central
subjects Actuators
Algorithms
Aluminum
Amplification
Automation
Continuous flow
Cooling
DNA amplification
Equipment Design
Equipment Failure Analysis
Feedback
Heat
Heating - instrumentation
Influenza
Liquids
Medical research
Microchannels
Microfluidic Analytical Techniques - instrumentation
microfluidics
Oscillometry - instrumentation
PCR
Plug flow
Polymerase Chain Reaction - instrumentation
Reagents
Sensors
Temperature gradient
Thermal cycling
Thermography - instrumentation
Transducers
title Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20a%20liquid%20plug-flow%20thermal%20cycling%20technique%20using%20a%20temperature%20gradient-based%20actuator&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Fuchiwaki,%20Yusuke&rft.date=2014-10-27&rft.volume=14&rft.issue=11&rft.spage=20235&rft.epage=20244&rft.pages=20235-20244&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s141120235&rft_dat=%3Cproquest_doaj_%3E1618827569%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1635750083&rft_id=info:pmid/25350508&rfr_iscdi=true