Loading…
Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator
Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-...
Saved in:
Published in: | Sensors (Basel, Switzerland) Switzerland), 2014-10, Vol.14 (11), p.20235-20244 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3 |
---|---|
cites | cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3 |
container_end_page | 20244 |
container_issue | 11 |
container_start_page | 20235 |
container_title | Sensors (Basel, Switzerland) |
container_volume | 14 |
creator | Fuchiwaki, Yusuke Nagai, Hidenori |
description | Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques. |
doi_str_mv | 10.3390/s141120235 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e</doaj_id><sourcerecordid>1618827569</sourcerecordid><originalsourceid>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</originalsourceid><addsrcrecordid>eNqNkk1v1DAQhiMEoqVw4QegSFwQUsCfsX1BQlULlSpxAM7WxJlks3LixXaK9t_jZUtpOXGyPX70aGb0VtVLSt5xbsj7RAWljDAuH1WnVDDRaMbI43v3k-pZSltSEM710-qESS6JJPq0gq957fd1GGqo_fRjnfp659exGXz4WecNxhl87fbOT8tYZ3SbpUBYr-nwhlKZdxghrxHrMUI_4ZKbDhL2Nbi8Qg7xefVkAJ_wxe15Vn2_vPh2_rm5_vLp6vzjdeNaQXPjCErKpaZgCBWmd7LTQqDpTN8NCAhMAdfKdYZ3yAyynoIGwtFR3hru-Fl1dfT2AbZ2F6cZ4t4GmOzvQoijhZgn59FSaih1ymmhWjG4AbjQEojsCB0GqrC4Phxdu7WbsXdlqgj-gfThzzJt7BhurGDKCGWK4M2tIIayr5TtPCWH3sOCYU2Wti0hquVM_AdKtWZKtgfr63_QbVjjUrZaKC6VJETzQr09Ui6GlCIOd31TYg-BsX8DU-BX9ye9Q_8khP8CTeq7Uw</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>1635750083</pqid></control><display><type>article</type><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Fuchiwaki, Yusuke ; Nagai, Hidenori</creator><creatorcontrib>Fuchiwaki, Yusuke ; Nagai, Hidenori</creatorcontrib><description>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</description><identifier>ISSN: 1424-8220</identifier><identifier>EISSN: 1424-8220</identifier><identifier>DOI: 10.3390/s141120235</identifier><identifier>PMID: 25350508</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Actuators ; Algorithms ; Aluminum ; Amplification ; Automation ; Continuous flow ; Cooling ; DNA amplification ; Equipment Design ; Equipment Failure Analysis ; Feedback ; Heat ; Heating - instrumentation ; Influenza ; Liquids ; Medical research ; Microchannels ; Microfluidic Analytical Techniques - instrumentation ; microfluidics ; Oscillometry - instrumentation ; PCR ; Plug flow ; Polymerase Chain Reaction - instrumentation ; Reagents ; Sensors ; Temperature gradient ; Thermal cycling ; Thermography - instrumentation ; Transducers</subject><ispartof>Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20235-20244</ispartof><rights>Copyright MDPI AG 2014</rights><rights>2014 by the authors; licensee MDPI, Basel, Switzerland. 2014</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</citedby><cites>FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/1635750083/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/1635750083?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,25732,27903,27904,36991,36992,44569,53769,53771,74872</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/25350508$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Fuchiwaki, Yusuke</creatorcontrib><creatorcontrib>Nagai, Hidenori</creatorcontrib><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><title>Sensors (Basel, Switzerland)</title><addtitle>Sensors (Basel)</addtitle><description>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</description><subject>Actuators</subject><subject>Algorithms</subject><subject>Aluminum</subject><subject>Amplification</subject><subject>Automation</subject><subject>Continuous flow</subject><subject>Cooling</subject><subject>DNA amplification</subject><subject>Equipment Design</subject><subject>Equipment Failure Analysis</subject><subject>Feedback</subject><subject>Heat</subject><subject>Heating - instrumentation</subject><subject>Influenza</subject><subject>Liquids</subject><subject>Medical research</subject><subject>Microchannels</subject><subject>Microfluidic Analytical Techniques - instrumentation</subject><subject>microfluidics</subject><subject>Oscillometry - instrumentation</subject><subject>PCR</subject><subject>Plug flow</subject><subject>Polymerase Chain Reaction - instrumentation</subject><subject>Reagents</subject><subject>Sensors</subject><subject>Temperature gradient</subject><subject>Thermal cycling</subject><subject>Thermography - instrumentation</subject><subject>Transducers</subject><issn>1424-8220</issn><issn>1424-8220</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2014</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNqNkk1v1DAQhiMEoqVw4QegSFwQUsCfsX1BQlULlSpxAM7WxJlks3LixXaK9t_jZUtpOXGyPX70aGb0VtVLSt5xbsj7RAWljDAuH1WnVDDRaMbI43v3k-pZSltSEM710-qESS6JJPq0gq957fd1GGqo_fRjnfp659exGXz4WecNxhl87fbOT8tYZ3SbpUBYr-nwhlKZdxghrxHrMUI_4ZKbDhL2Nbi8Qg7xefVkAJ_wxe15Vn2_vPh2_rm5_vLp6vzjdeNaQXPjCErKpaZgCBWmd7LTQqDpTN8NCAhMAdfKdYZ3yAyynoIGwtFR3hru-Fl1dfT2AbZ2F6cZ4t4GmOzvQoijhZgn59FSaih1ymmhWjG4AbjQEojsCB0GqrC4Phxdu7WbsXdlqgj-gfThzzJt7BhurGDKCGWK4M2tIIayr5TtPCWH3sOCYU2Wti0hquVM_AdKtWZKtgfr63_QbVjjUrZaKC6VJETzQr09Ui6GlCIOd31TYg-BsX8DU-BX9ye9Q_8khP8CTeq7Uw</recordid><startdate>20141027</startdate><enddate>20141027</enddate><creator>Fuchiwaki, Yusuke</creator><creator>Nagai, Hidenori</creator><general>MDPI AG</general><general>MDPI</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>K9.</scope><scope>M0S</scope><scope>M1P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>7X8</scope><scope>7SP</scope><scope>7TB</scope><scope>7U5</scope><scope>8FD</scope><scope>FR3</scope><scope>L7M</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20141027</creationdate><title>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</title><author>Fuchiwaki, Yusuke ; Nagai, Hidenori</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2014</creationdate><topic>Actuators</topic><topic>Algorithms</topic><topic>Aluminum</topic><topic>Amplification</topic><topic>Automation</topic><topic>Continuous flow</topic><topic>Cooling</topic><topic>DNA amplification</topic><topic>Equipment Design</topic><topic>Equipment Failure Analysis</topic><topic>Feedback</topic><topic>Heat</topic><topic>Heating - instrumentation</topic><topic>Influenza</topic><topic>Liquids</topic><topic>Medical research</topic><topic>Microchannels</topic><topic>Microfluidic Analytical Techniques - instrumentation</topic><topic>microfluidics</topic><topic>Oscillometry - instrumentation</topic><topic>PCR</topic><topic>Plug flow</topic><topic>Polymerase Chain Reaction - instrumentation</topic><topic>Reagents</topic><topic>Sensors</topic><topic>Temperature gradient</topic><topic>Thermal cycling</topic><topic>Thermography - instrumentation</topic><topic>Transducers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Fuchiwaki, Yusuke</creatorcontrib><creatorcontrib>Nagai, Hidenori</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>MEDLINE - Academic</collection><collection>Electronics & Communications Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>Technology Research Database</collection><collection>Engineering Research Database</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Sensors (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Fuchiwaki, Yusuke</au><au>Nagai, Hidenori</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator</atitle><jtitle>Sensors (Basel, Switzerland)</jtitle><addtitle>Sensors (Basel)</addtitle><date>2014-10-27</date><risdate>2014</risdate><volume>14</volume><issue>11</issue><spage>20235</spage><epage>20244</epage><pages>20235-20244</pages><issn>1424-8220</issn><eissn>1424-8220</eissn><abstract>Easy-to-use thermal cycling for performing rapid and small-volume DNA amplification on a single chip has attracted great interest in the area of rapid field detection of biological agents. For this purpose, as a more practical alternative to conventional continuous flow thermal cycling, liquid plug-flow thermal cycling utilizes a thermal gradient generated in a serpentine rectangular flow microchannel as an actuator. The transit time and flow speed of the plug flow varied drastically in each temperature zone due to the difference in the tension at the interface between temperature gradients. According to thermal distribution analyses in microfluidics, the plug flow allowed for a slow heating process, but a fast cooling process. The thermal cycle of the microfluid was consistent with the recommended temperature gradient for PCR. Indeed, amplification efficiency of the plug flow was superior to continuous flow PCR, and provided an impressive improvement over previously-reported flow microchannel thermal cycling techniques.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>25350508</pmid><doi>10.3390/s141120235</doi><tpages>10</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1424-8220 |
ispartof | Sensors (Basel, Switzerland), 2014-10, Vol.14 (11), p.20235-20244 |
issn | 1424-8220 1424-8220 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_11911c7c84764fcfa3485a05b01ff17e |
source | Publicly Available Content Database; PubMed Central |
subjects | Actuators Algorithms Aluminum Amplification Automation Continuous flow Cooling DNA amplification Equipment Design Equipment Failure Analysis Feedback Heat Heating - instrumentation Influenza Liquids Medical research Microchannels Microfluidic Analytical Techniques - instrumentation microfluidics Oscillometry - instrumentation PCR Plug flow Polymerase Chain Reaction - instrumentation Reagents Sensors Temperature gradient Thermal cycling Thermography - instrumentation Transducers |
title | Study of a liquid plug-flow thermal cycling technique using a temperature gradient-based actuator |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-25T22%3A24%3A23IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Study%20of%20a%20liquid%20plug-flow%20thermal%20cycling%20technique%20using%20a%20temperature%20gradient-based%20actuator&rft.jtitle=Sensors%20(Basel,%20Switzerland)&rft.au=Fuchiwaki,%20Yusuke&rft.date=2014-10-27&rft.volume=14&rft.issue=11&rft.spage=20235&rft.epage=20244&rft.pages=20235-20244&rft.issn=1424-8220&rft.eissn=1424-8220&rft_id=info:doi/10.3390/s141120235&rft_dat=%3Cproquest_doaj_%3E1618827569%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c641t-c0e513581a90149dc5b844e9b9dbfeaea27a387cb93be29e2d1a8a03ec13693c3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=1635750083&rft_id=info:pmid/25350508&rfr_iscdi=true |