Loading…

Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder

The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual appr...

Full description

Saved in:
Bibliographic Details
Published in:Heliyon 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609
Main Authors: Bairagi, T., Jahid Hasan, Md, Hudha, M.N., Azad, A.K., Rahman, M.M.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23
container_end_page e28609
container_issue 7
container_start_page e28609
container_title Heliyon
container_volume 10
creator Bairagi, T.
Jahid Hasan, Md
Hudha, M.N.
Azad, A.K.
Rahman, M.M.
description The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.
doi_str_mv 10.1016/j.heliyon.2024.e28609
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024046401</els_id><doaj_id>oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318</doaj_id><sourcerecordid>3153812034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEolXpI4B8LIdd_DfrnNCqKrRSVS5wthx7svGS2MFOusoD8Z54u9vSnnqyPfPNz57xVxQfCV4STMov22ULnZuDX1JM-RKoLHH1pjilHIuF5By_fbY_Kc5T2mKMiZBltWLvixMmS1lVAp8Wf9dxdI0zTnfIwxQflnEX4m90sb67-4y0192cXELBo7GF2IehzWeThUMMA-RyyMkG9XqTK0M72xjs7HXvTEJNF3Zo58YWRW2dHl2mOJ-hSEezSK0ewCLwpgtpinBQahTDmKV-g8zcOW8hfijeNbpLcH5cz4pf365-Xl4vbn98v7lc3y6MIGJcaEFqajjoqpac0BIqQi2XeAWSrzjDkjKLV9gKsBQ3AJzWHLgggLUxpaHsrLg5cG3QWzVE1-s4q6CdegiEuFE6N2w6UIRUhoKuGZEZLlgtjCVQaslIyXMws74eWMNU92AN-DFP9wX0Zca7Vm3CfSZjUQmKM-HiSIjhzwRpVL1LBrpOewhTUowIJkkW8telmFcrIgXbU8VBamJIKULz9CSC1d5daquO7lJ7d6mDu3Ldp-f9PFU9eul_w5B_6N5BVMm4_LdgXQQz5hG6V674B4FL53M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049718530</pqid></control><display><type>article</type><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</creator><creatorcontrib>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</creatorcontrib><description>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e28609</identifier><identifier>PMID: 38689950</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial neural network ; comparative study ; heat transfer ; Lid-driven arc-shaped cavity ; magnetism ; nanofluids ; neural networks ; prediction ; Rotating cylinder ; temperature ; Two-layer feed-forward model ; Water-based Al2O3 nanofluid</subject><ispartof>Heliyon, 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</cites><orcidid>0000-0001-7962-7049 ; 0009-0006-7370-5118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024046401$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38689950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bairagi, T.</creatorcontrib><creatorcontrib>Jahid Hasan, Md</creatorcontrib><creatorcontrib>Hudha, M.N.</creatorcontrib><creatorcontrib>Azad, A.K.</creatorcontrib><creatorcontrib>Rahman, M.M.</creatorcontrib><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</description><subject>Artificial neural network</subject><subject>comparative study</subject><subject>heat transfer</subject><subject>Lid-driven arc-shaped cavity</subject><subject>magnetism</subject><subject>nanofluids</subject><subject>neural networks</subject><subject>prediction</subject><subject>Rotating cylinder</subject><subject>temperature</subject><subject>Two-layer feed-forward model</subject><subject>Water-based Al2O3 nanofluid</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFks9u1DAQxiMEolXpI4B8LIdd_DfrnNCqKrRSVS5wthx7svGS2MFOusoD8Z54u9vSnnqyPfPNz57xVxQfCV4STMov22ULnZuDX1JM-RKoLHH1pjilHIuF5By_fbY_Kc5T2mKMiZBltWLvixMmS1lVAp8Wf9dxdI0zTnfIwxQflnEX4m90sb67-4y0192cXELBo7GF2IehzWeThUMMA-RyyMkG9XqTK0M72xjs7HXvTEJNF3Zo58YWRW2dHl2mOJ-hSEezSK0ewCLwpgtpinBQahTDmKV-g8zcOW8hfijeNbpLcH5cz4pf365-Xl4vbn98v7lc3y6MIGJcaEFqajjoqpac0BIqQi2XeAWSrzjDkjKLV9gKsBQ3AJzWHLgggLUxpaHsrLg5cG3QWzVE1-s4q6CdegiEuFE6N2w6UIRUhoKuGZEZLlgtjCVQaslIyXMws74eWMNU92AN-DFP9wX0Zca7Vm3CfSZjUQmKM-HiSIjhzwRpVL1LBrpOewhTUowIJkkW8telmFcrIgXbU8VBamJIKULz9CSC1d5daquO7lJ7d6mDu3Ldp-f9PFU9eul_w5B_6N5BVMm4_LdgXQQz5hG6V674B4FL53M</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Bairagi, T.</creator><creator>Jahid Hasan, Md</creator><creator>Hudha, M.N.</creator><creator>Azad, A.K.</creator><creator>Rahman, M.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7962-7049</orcidid><orcidid>https://orcid.org/0009-0006-7370-5118</orcidid></search><sort><creationdate>20240415</creationdate><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><author>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>comparative study</topic><topic>heat transfer</topic><topic>Lid-driven arc-shaped cavity</topic><topic>magnetism</topic><topic>nanofluids</topic><topic>neural networks</topic><topic>prediction</topic><topic>Rotating cylinder</topic><topic>temperature</topic><topic>Two-layer feed-forward model</topic><topic>Water-based Al2O3 nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bairagi, T.</creatorcontrib><creatorcontrib>Jahid Hasan, Md</creatorcontrib><creatorcontrib>Hudha, M.N.</creatorcontrib><creatorcontrib>Azad, A.K.</creatorcontrib><creatorcontrib>Rahman, M.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bairagi, T.</au><au>Jahid Hasan, Md</au><au>Hudha, M.N.</au><au>Azad, A.K.</au><au>Rahman, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-04-15</date><risdate>2024</risdate><volume>10</volume><issue>7</issue><spage>e28609</spage><epage>e28609</epage><pages>e28609-e28609</pages><artnum>e28609</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38689950</pmid><doi>10.1016/j.heliyon.2024.e28609</doi><orcidid>https://orcid.org/0000-0001-7962-7049</orcidid><orcidid>https://orcid.org/0009-0006-7370-5118</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2405-8440
ispartof Heliyon, 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609
issn 2405-8440
2405-8440
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318
source ScienceDirect (Online service); PubMed Central
subjects Artificial neural network
comparative study
heat transfer
Lid-driven arc-shaped cavity
magnetism
nanofluids
neural networks
prediction
Rotating cylinder
temperature
Two-layer feed-forward model
Water-based Al2O3 nanofluid
title Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20(ANN)%20analysis%20on%20thermophysical%20properties%20of%20magnetohydrodynamics%20flow%20with%20radiation%20in%20an%20arc-shaped%20enclosure%20with%20a%20rotating%20cylinder&rft.jtitle=Heliyon&rft.au=Bairagi,%20T.&rft.date=2024-04-15&rft.volume=10&rft.issue=7&rft.spage=e28609&rft.epage=e28609&rft.pages=e28609-e28609&rft.artnum=e28609&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e28609&rft_dat=%3Cproquest_doaj_%3E3153812034%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049718530&rft_id=info:pmid/38689950&rfr_iscdi=true