Loading…
Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder
The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual appr...
Saved in:
Published in: | Heliyon 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23 |
container_end_page | e28609 |
container_issue | 7 |
container_start_page | e28609 |
container_title | Heliyon |
container_volume | 10 |
creator | Bairagi, T. Jahid Hasan, Md Hudha, M.N. Azad, A.K. Rahman, M.M. |
description | The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate. |
doi_str_mv | 10.1016/j.heliyon.2024.e28609 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2405844024046401</els_id><doaj_id>oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318</doaj_id><sourcerecordid>3153812034</sourcerecordid><originalsourceid>FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</originalsourceid><addsrcrecordid>eNqFks9u1DAQxiMEolXpI4B8LIdd_DfrnNCqKrRSVS5wthx7svGS2MFOusoD8Z54u9vSnnqyPfPNz57xVxQfCV4STMov22ULnZuDX1JM-RKoLHH1pjilHIuF5By_fbY_Kc5T2mKMiZBltWLvixMmS1lVAp8Wf9dxdI0zTnfIwxQflnEX4m90sb67-4y0192cXELBo7GF2IehzWeThUMMA-RyyMkG9XqTK0M72xjs7HXvTEJNF3Zo58YWRW2dHl2mOJ-hSEezSK0ewCLwpgtpinBQahTDmKV-g8zcOW8hfijeNbpLcH5cz4pf365-Xl4vbn98v7lc3y6MIGJcaEFqajjoqpac0BIqQi2XeAWSrzjDkjKLV9gKsBQ3AJzWHLgggLUxpaHsrLg5cG3QWzVE1-s4q6CdegiEuFE6N2w6UIRUhoKuGZEZLlgtjCVQaslIyXMws74eWMNU92AN-DFP9wX0Zca7Vm3CfSZjUQmKM-HiSIjhzwRpVL1LBrpOewhTUowIJkkW8telmFcrIgXbU8VBamJIKULz9CSC1d5daquO7lJ7d6mDu3Ldp-f9PFU9eul_w5B_6N5BVMm4_LdgXQQz5hG6V674B4FL53M</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3049718530</pqid></control><display><type>article</type><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><source>ScienceDirect (Online service)</source><source>PubMed Central</source><creator>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</creator><creatorcontrib>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</creatorcontrib><description>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</description><identifier>ISSN: 2405-8440</identifier><identifier>EISSN: 2405-8440</identifier><identifier>DOI: 10.1016/j.heliyon.2024.e28609</identifier><identifier>PMID: 38689950</identifier><language>eng</language><publisher>England: Elsevier Ltd</publisher><subject>Artificial neural network ; comparative study ; heat transfer ; Lid-driven arc-shaped cavity ; magnetism ; nanofluids ; neural networks ; prediction ; Rotating cylinder ; temperature ; Two-layer feed-forward model ; Water-based Al2O3 nanofluid</subject><ispartof>Heliyon, 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609</ispartof><rights>2024 The Author(s)</rights><rights>2024 The Author(s).</rights><rights>2024 The Author(s) 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</cites><orcidid>0000-0001-7962-7049 ; 0009-0006-7370-5118</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11059520/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2405844024046401$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,3536,27901,27902,45756,53766,53768</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38689950$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Bairagi, T.</creatorcontrib><creatorcontrib>Jahid Hasan, Md</creatorcontrib><creatorcontrib>Hudha, M.N.</creatorcontrib><creatorcontrib>Azad, A.K.</creatorcontrib><creatorcontrib>Rahman, M.M.</creatorcontrib><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><title>Heliyon</title><addtitle>Heliyon</addtitle><description>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</description><subject>Artificial neural network</subject><subject>comparative study</subject><subject>heat transfer</subject><subject>Lid-driven arc-shaped cavity</subject><subject>magnetism</subject><subject>nanofluids</subject><subject>neural networks</subject><subject>prediction</subject><subject>Rotating cylinder</subject><subject>temperature</subject><subject>Two-layer feed-forward model</subject><subject>Water-based Al2O3 nanofluid</subject><issn>2405-8440</issn><issn>2405-8440</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFks9u1DAQxiMEolXpI4B8LIdd_DfrnNCqKrRSVS5wthx7svGS2MFOusoD8Z54u9vSnnqyPfPNz57xVxQfCV4STMov22ULnZuDX1JM-RKoLHH1pjilHIuF5By_fbY_Kc5T2mKMiZBltWLvixMmS1lVAp8Wf9dxdI0zTnfIwxQflnEX4m90sb67-4y0192cXELBo7GF2IehzWeThUMMA-RyyMkG9XqTK0M72xjs7HXvTEJNF3Zo58YWRW2dHl2mOJ-hSEezSK0ewCLwpgtpinBQahTDmKV-g8zcOW8hfijeNbpLcH5cz4pf365-Xl4vbn98v7lc3y6MIGJcaEFqajjoqpac0BIqQi2XeAWSrzjDkjKLV9gKsBQ3AJzWHLgggLUxpaHsrLg5cG3QWzVE1-s4q6CdegiEuFE6N2w6UIRUhoKuGZEZLlgtjCVQaslIyXMws74eWMNU92AN-DFP9wX0Zca7Vm3CfSZjUQmKM-HiSIjhzwRpVL1LBrpOewhTUowIJkkW8telmFcrIgXbU8VBamJIKULz9CSC1d5daquO7lJ7d6mDu3Ldp-f9PFU9eul_w5B_6N5BVMm4_LdgXQQz5hG6V674B4FL53M</recordid><startdate>20240415</startdate><enddate>20240415</enddate><creator>Bairagi, T.</creator><creator>Jahid Hasan, Md</creator><creator>Hudha, M.N.</creator><creator>Azad, A.K.</creator><creator>Rahman, M.M.</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>7S9</scope><scope>L.6</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7962-7049</orcidid><orcidid>https://orcid.org/0009-0006-7370-5118</orcidid></search><sort><creationdate>20240415</creationdate><title>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</title><author>Bairagi, T. ; Jahid Hasan, Md ; Hudha, M.N. ; Azad, A.K. ; Rahman, M.M.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Artificial neural network</topic><topic>comparative study</topic><topic>heat transfer</topic><topic>Lid-driven arc-shaped cavity</topic><topic>magnetism</topic><topic>nanofluids</topic><topic>neural networks</topic><topic>prediction</topic><topic>Rotating cylinder</topic><topic>temperature</topic><topic>Two-layer feed-forward model</topic><topic>Water-based Al2O3 nanofluid</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Bairagi, T.</creatorcontrib><creatorcontrib>Jahid Hasan, Md</creatorcontrib><creatorcontrib>Hudha, M.N.</creatorcontrib><creatorcontrib>Azad, A.K.</creatorcontrib><creatorcontrib>Rahman, M.M.</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>AGRICOLA</collection><collection>AGRICOLA - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Heliyon</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Bairagi, T.</au><au>Jahid Hasan, Md</au><au>Hudha, M.N.</au><au>Azad, A.K.</au><au>Rahman, M.M.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder</atitle><jtitle>Heliyon</jtitle><addtitle>Heliyon</addtitle><date>2024-04-15</date><risdate>2024</risdate><volume>10</volume><issue>7</issue><spage>e28609</spage><epage>e28609</epage><pages>e28609-e28609</pages><artnum>e28609</artnum><issn>2405-8440</issn><eissn>2405-8440</eissn><abstract>The objective of this research is to examine the thermophysical features of magnetic parameter (Ha) and time step (τ) in a lid-driven cavity using a water-based Al2O3 nanofluid and the efficacy of ANN models in accurately predicting the average heat transfer rate. The Galerkin weighted residual approach is used to solve a set of dimensionless nonlinear governing equations. The Levenberg-Marquardt back propagation technique is used for training ANN using sparse simulated data. The findings of the investigation about the flow and thermal fields are shown. Furthermore, a comparative study and prediction have been conducted on the impact of manipulating factors on the average Nusselt number derived from the numerical heat transfer analysis. The findings of the research indicate that, in the absence of magnetohydrodynamics, a rise in the Hartmann number resulted in a drop in both the fluid velocity profile and magnitude. Conversely, it was observed that the temperature and Nusselt number exhibited an increase under these conditions. The mean temperature of the fluid rises as the Hartmann number drops, reaching a peak value of 0.114 when Ha = 0. The scenario where Ha = 0, representing the lack of magnetohydrodynamics, shows the highest average Nusselt number, whereas the instance with Ha = 45 presents the lowest Nusselt number. The ANN model has a high level of accuracy, as seen by an MSE value of 0.00069 and a MAE value of 0.0175, resulting in a 99% accuracy rate.</abstract><cop>England</cop><pub>Elsevier Ltd</pub><pmid>38689950</pmid><doi>10.1016/j.heliyon.2024.e28609</doi><orcidid>https://orcid.org/0000-0001-7962-7049</orcidid><orcidid>https://orcid.org/0009-0006-7370-5118</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2405-8440 |
ispartof | Heliyon, 2024-04, Vol.10 (7), p.e28609-e28609, Article e28609 |
issn | 2405-8440 2405-8440 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_119c2eab31884753b5cd1e6a83164318 |
source | ScienceDirect (Online service); PubMed Central |
subjects | Artificial neural network comparative study heat transfer Lid-driven arc-shaped cavity magnetism nanofluids neural networks prediction Rotating cylinder temperature Two-layer feed-forward model Water-based Al2O3 nanofluid |
title | Artificial neural network (ANN) analysis on thermophysical properties of magnetohydrodynamics flow with radiation in an arc-shaped enclosure with a rotating cylinder |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-07T22%3A48%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Artificial%20neural%20network%20(ANN)%20analysis%20on%20thermophysical%20properties%20of%20magnetohydrodynamics%20flow%20with%20radiation%20in%20an%20arc-shaped%20enclosure%20with%20a%20rotating%20cylinder&rft.jtitle=Heliyon&rft.au=Bairagi,%20T.&rft.date=2024-04-15&rft.volume=10&rft.issue=7&rft.spage=e28609&rft.epage=e28609&rft.pages=e28609-e28609&rft.artnum=e28609&rft.issn=2405-8440&rft.eissn=2405-8440&rft_id=info:doi/10.1016/j.heliyon.2024.e28609&rft_dat=%3Cproquest_doaj_%3E3153812034%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c515t-a51b2c4ea9b84126e912d4807e847430823d070d5ed20fee42b4e451e0acc6c23%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3049718530&rft_id=info:pmid/38689950&rfr_iscdi=true |