Loading…

Fault Diagnosis Based on BP Neural Network Optimized by Beetle Algorithm

In the process of Wavelet Analysis, only the low-frequency signals are re-decomposed, and the high-frequency signals are no longer decomposed, resulting in a decrease in frequency resolution with increasing frequency. Therefore, in this paper, firstly, Wavelet Packet Decomposition is used for featur...

Full description

Saved in:
Bibliographic Details
Published in:Chinese journal of mechanical engineering 2021-12, Vol.34 (1), p.1-10, Article 119
Main Authors: Xiao, Maohua, Zhang, Wei, Wen, Kai, Zhu, Yue, Yiliyasi, Yilidaer
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In the process of Wavelet Analysis, only the low-frequency signals are re-decomposed, and the high-frequency signals are no longer decomposed, resulting in a decrease in frequency resolution with increasing frequency. Therefore, in this paper, firstly, Wavelet Packet Decomposition is used for feature extraction of vibration signals, which makes up for the shortcomings of Wavelet Analysis in extracting fault features of nonlinear vibration signals, and different energy values in different frequency bands are obtained by Wavelet Packet Decomposition. The features are visualized by the K-Means clustering method, and the results show that the extracted energy features can accurately distinguish the different states of the bearing. Then a fault diagnosis model based on BP Neural Network optimized by Beetle Algorithm is proposed to identify the bearing faults. Compared with the Particle Swarm Algorithm, Beetle Algorithm can quickly find the error extreme value, which greatly reduces the training time of the model. At last, two experiments are conducted, which show that the accuracy of the model can reach more than 95%, and the model has a certain anti-interference ability.
ISSN:1000-9345
2192-8258
DOI:10.1186/s10033-021-00648-2