Loading…

MXene‐Stabilized VS2 Nanostructures for High‐Performance Aqueous Zinc Ion Storage

Aqueous zinc‐ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large‐scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium‐based electrode materials has been hindered by cha...

Full description

Saved in:
Bibliographic Details
Published in:Advanced science 2024-07, Vol.11 (25), p.e2401252-n/a
Main Authors: Zhang, Liping, Li, Yeying, Liu, Xianjie, Yang, Ruping, Qiu, Junxiao, Xu, Jingkun, Lu, Baoyang, Rosen, Johanna, Qin, Leiqiang, Jiang, Jianxia
Format: Article
Language:English
Subjects:
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Aqueous zinc‐ion batteries (AZIBs) based on vanadium oxides or sulfides are promising candidates for large‐scale rechargeable energy storage due to their ease of fabrication, low cost, and high safety. However, the commercial application of vanadium‐based electrode materials has been hindered by challenging problems such as poor cyclability and low‐rate performance. To this regard, sophisticated nanostructure engineering technology is used to adeptly incorporate VS2 nanosheets into the MXene interlayers to create a stable 2D heterogeneous layered structure. The MXene nanosheets exhibit stable interactions with VS2 nanosheets, while intercalation between nanosheets effectively increases the interlayer spacing, further enhancing their stability in AZIBs. Benefiting from the heterogeneous layered structure with high conductivity, excellent electron/ion transport, and abundant reactive sites, the free‐standing VS2/Ti3C2Tz composite film can be used as both the cathode and the anode of AZIBs. Specifically, the VS2/Ti3C2Tz cathode presents a high specific capacity of 285 mAh g−1 at 0.2 A g−1. Furthermore, the flexible Zn‐metal free in‐plane VS2/Ti3C2Tz//MnO2/CNT AZIBs deliver high operation voltage (2.0 V) and impressive long‐term cycling stability (with a capacity retention of 97% after 5000 cycles) which outperforms almost all reported Vanadium‐based electrodes for AZIBs. The effective modulation of the material structure through nanocomposite engineering effectively enhances the stability of VS2, which shows great potential in Zn2+ storage. This work will hasten and stimulate further development of such composite material in the direction of energy storage. The stable 2D heterogeneous layered composite films are designed by mixing VS2 and MXene in a simple one‐step process. Composite films can be used as both cathode and anode of aqueous zinc‐ion batteries (AZIBs). Furthermore, it exhibits impressive stability with 97% capacity retention after 5000 cycles and high operation voltage (2.0 V) for the flexible Zn‐metal free in‐plane AZIBs.
ISSN:2198-3844
2198-3844
DOI:10.1002/advs.202401252