Loading…

Computed tomography imaging for the characterisation of drugs with radiation density measurements and HU spectroscopy

To investigate the computed tomography (CT) density of frequently administered medications (1) for the better characterisation of substances on abdominal CT, (2) to allow radiologists to narrow down possibilities in the identification of hyperdense material in the bowel and (3) to provide forensic d...

Full description

Saved in:
Bibliographic Details
Published in:Swiss medical weekly 2018-01, Vol.148 (34), p.w14585
Main Authors: Sieron, Dominik A, Steib, Moritz, Suter, Dominik, Obmann, Verena C, Huber, Adrian T, Ebner, Lukas, Inderbitzin, Daniel, Christe, Andreas
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:To investigate the computed tomography (CT) density of frequently administered medications (1) for the better characterisation of substances on abdominal CT, (2) to allow radiologists to narrow down possibilities in the identification of hyperdense material in the bowel and (3) to provide forensic doctors with a tool to identify gastric contents before an autopsy. From the list of the local hospital pharmacy, the 50 most frequently used medications were identified and scanned twice with a 128 row CT scanner (Acquillion, Toshiba, Tokyo, Japan). The protocol comprised two tube voltages of 100 kVp and 120 kVp, with a tube current of 100 mAs, a collimation of 0.5 mm and a slice thickness of 0.5 mm. Two readers were asked to measure the density (in Hounsfield units) and the noise (standard deviation of the Hounsfield units) of each pill in the two scans (100/120 kVp). After 4 weeks, both readers repeated the measurements to test repeatability (intra-rater agreement). The behaviour of each pill in hydrochloric acid (pH 2) was examined and the dissolution time was determined. The most dense pill was Cordarone (7265 HU), and the least was Perenterol (529 HU), with an attenuation that was lower than fat density (
ISSN:1424-7860
1424-3997
DOI:10.4414/smw.2018.14585