Loading…
One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets
The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stella...
Saved in:
Published in: | Axioms 2023-04, Vol.12 (4), p.348 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3 |
---|---|
cites | cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3 |
container_end_page | |
container_issue | 4 |
container_start_page | 348 |
container_title | Axioms |
container_volume | 12 |
creator | Iglesias Álvarez, Santiago Díez Alonso, Enrique Sánchez Rodríguez, María Luisa Rodríguez Rodríguez, Javier Sánchez Lasheras, Fernando de Cos Juez, Francisco Javier |
description | The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis). |
doi_str_mv | 10.3390/axioms12040348 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747308095</galeid><doaj_id>oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674</doaj_id><sourcerecordid>A747308095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</originalsourceid><addsrcrecordid>eNpVUU1PAjEQ3RhNJMjVM4nnxX5v90gAlYRITPDctKUlxWWLbVH891bW-DFzmJmXeS-TeUVxDcEI4xrcyqPzuwgRIAATflb0EKhoCRkH53_6y2IQ4xbkqCHmEPeKp2VryqnbmTY638pmOPHtm28OqZsezSGcSnr34SUOrQ_DqUlGJ9duhqsgM-3Uzo5-38jWpHhVXFjZRDP4rv3i-W62mjyUi-X9fDJelJpAlEpSM8Yx0hIpBY3WBgFlGTNG6gpbgjC1kjGIrKKUQkgB5lpVrOYV1JZTifvFvNNde7kV--B2MnwIL504AT5shAzJ6cYIiKBWHK2xRYpgizknCipbW6QtZRXJWjed1j7414OJSWz9IeQHRIE4YCRfSmDeGnVbG5lFXWt9ClLnXJud07411mV8XJEKAw5q-kvQwccYjP05EwLxZZv4bxv-BHAfi1c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806468341</pqid></control><display><type>article</type><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</creator><creatorcontrib>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</creatorcontrib><description>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms12040348</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; astrophysics ; convolutional neural networks ; Discovery and exploration ; Earth ; exoplanets ; Extrasolar planets ; Light ; Light curve ; Machine learning ; Neural networks ; Planet detection ; Telescopes ; Transit ; transits ; Trends</subject><ispartof>Axioms, 2023-04, Vol.12 (4), p.348</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</citedby><cites>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</cites><orcidid>0000-0002-5826-9892 ; 0000-0002-2718-2022 ; 0000-0002-9660-7944 ; 0000-0001-5903-9899 ; 0000-0002-4249-1026 ; 0000-0002-7052-2811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806468341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806468341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Iglesias Álvarez, Santiago</creatorcontrib><creatorcontrib>Díez Alonso, Enrique</creatorcontrib><creatorcontrib>Sánchez Rodríguez, María Luisa</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Sánchez Lasheras, Fernando</creatorcontrib><creatorcontrib>de Cos Juez, Francisco Javier</creatorcontrib><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><title>Axioms</title><description>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>astrophysics</subject><subject>convolutional neural networks</subject><subject>Discovery and exploration</subject><subject>Earth</subject><subject>exoplanets</subject><subject>Extrasolar planets</subject><subject>Light</subject><subject>Light curve</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Planet detection</subject><subject>Telescopes</subject><subject>Transit</subject><subject>transits</subject><subject>Trends</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1PAjEQ3RhNJMjVM4nnxX5v90gAlYRITPDctKUlxWWLbVH891bW-DFzmJmXeS-TeUVxDcEI4xrcyqPzuwgRIAATflb0EKhoCRkH53_6y2IQ4xbkqCHmEPeKp2VryqnbmTY638pmOPHtm28OqZsezSGcSnr34SUOrQ_DqUlGJ9duhqsgM-3Uzo5-38jWpHhVXFjZRDP4rv3i-W62mjyUi-X9fDJelJpAlEpSM8Yx0hIpBY3WBgFlGTNG6gpbgjC1kjGIrKKUQkgB5lpVrOYV1JZTifvFvNNde7kV--B2MnwIL504AT5shAzJ6cYIiKBWHK2xRYpgizknCipbW6QtZRXJWjed1j7414OJSWz9IeQHRIE4YCRfSmDeGnVbG5lFXWt9ClLnXJud07411mV8XJEKAw5q-kvQwccYjP05EwLxZZv4bxv-BHAfi1c</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Iglesias Álvarez, Santiago</creator><creator>Díez Alonso, Enrique</creator><creator>Sánchez Rodríguez, María Luisa</creator><creator>Rodríguez Rodríguez, Javier</creator><creator>Sánchez Lasheras, Fernando</creator><creator>de Cos Juez, Francisco Javier</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5826-9892</orcidid><orcidid>https://orcid.org/0000-0002-2718-2022</orcidid><orcidid>https://orcid.org/0000-0002-9660-7944</orcidid><orcidid>https://orcid.org/0000-0001-5903-9899</orcidid><orcidid>https://orcid.org/0000-0002-4249-1026</orcidid><orcidid>https://orcid.org/0000-0002-7052-2811</orcidid></search><sort><creationdate>20230401</creationdate><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><author>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>astrophysics</topic><topic>convolutional neural networks</topic><topic>Discovery and exploration</topic><topic>Earth</topic><topic>exoplanets</topic><topic>Extrasolar planets</topic><topic>Light</topic><topic>Light curve</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Planet detection</topic><topic>Telescopes</topic><topic>Transit</topic><topic>transits</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iglesias Álvarez, Santiago</creatorcontrib><creatorcontrib>Díez Alonso, Enrique</creatorcontrib><creatorcontrib>Sánchez Rodríguez, María Luisa</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Sánchez Lasheras, Fernando</creatorcontrib><creatorcontrib>de Cos Juez, Francisco Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iglesias Álvarez, Santiago</au><au>Díez Alonso, Enrique</au><au>Sánchez Rodríguez, María Luisa</au><au>Rodríguez Rodríguez, Javier</au><au>Sánchez Lasheras, Fernando</au><au>de Cos Juez, Francisco Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</atitle><jtitle>Axioms</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>348</spage><pages>348-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms12040348</doi><orcidid>https://orcid.org/0000-0002-5826-9892</orcidid><orcidid>https://orcid.org/0000-0002-2718-2022</orcidid><orcidid>https://orcid.org/0000-0002-9660-7944</orcidid><orcidid>https://orcid.org/0000-0001-5903-9899</orcidid><orcidid>https://orcid.org/0000-0002-4249-1026</orcidid><orcidid>https://orcid.org/0000-0002-7052-2811</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-1680 |
ispartof | Axioms, 2023-04, Vol.12 (4), p.348 |
issn | 2075-1680 2075-1680 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674 |
source | Publicly Available Content Database (Proquest) (PQ_SDU_P3) |
subjects | Algorithms Artificial intelligence Artificial neural networks astrophysics convolutional neural networks Discovery and exploration Earth exoplanets Extrasolar planets Light Light curve Machine learning Neural networks Planet detection Telescopes Transit transits Trends |
title | One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Convolutional%20Neural%20Networks%20for%20Detecting%20Transiting%20Exoplanets&rft.jtitle=Axioms&rft.au=Iglesias%20%C3%81lvarez,%20Santiago&rft.date=2023-04-01&rft.volume=12&rft.issue=4&rft.spage=348&rft.pages=348-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms12040348&rft_dat=%3Cgale_doaj_%3EA747308095%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806468341&rft_id=info:pmid/&rft_galeid=A747308095&rfr_iscdi=true |