Loading…

One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets

The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stella...

Full description

Saved in:
Bibliographic Details
Published in:Axioms 2023-04, Vol.12 (4), p.348
Main Authors: Iglesias Álvarez, Santiago, Díez Alonso, Enrique, Sánchez Rodríguez, María Luisa, Rodríguez Rodríguez, Javier, Sánchez Lasheras, Fernando, de Cos Juez, Francisco Javier
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3
cites cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3
container_end_page
container_issue 4
container_start_page 348
container_title Axioms
container_volume 12
creator Iglesias Álvarez, Santiago
Díez Alonso, Enrique
Sánchez Rodríguez, María Luisa
Rodríguez Rodríguez, Javier
Sánchez Lasheras, Fernando
de Cos Juez, Francisco Javier
description The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).
doi_str_mv 10.3390/axioms12040348
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A747308095</galeid><doaj_id>oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674</doaj_id><sourcerecordid>A747308095</sourcerecordid><originalsourceid>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</originalsourceid><addsrcrecordid>eNpVUU1PAjEQ3RhNJMjVM4nnxX5v90gAlYRITPDctKUlxWWLbVH891bW-DFzmJmXeS-TeUVxDcEI4xrcyqPzuwgRIAATflb0EKhoCRkH53_6y2IQ4xbkqCHmEPeKp2VryqnbmTY638pmOPHtm28OqZsezSGcSnr34SUOrQ_DqUlGJ9duhqsgM-3Uzo5-38jWpHhVXFjZRDP4rv3i-W62mjyUi-X9fDJelJpAlEpSM8Yx0hIpBY3WBgFlGTNG6gpbgjC1kjGIrKKUQkgB5lpVrOYV1JZTifvFvNNde7kV--B2MnwIL504AT5shAzJ6cYIiKBWHK2xRYpgizknCipbW6QtZRXJWjed1j7414OJSWz9IeQHRIE4YCRfSmDeGnVbG5lFXWt9ClLnXJud07411mV8XJEKAw5q-kvQwccYjP05EwLxZZv4bxv-BHAfi1c</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2806468341</pqid></control><display><type>article</type><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><creator>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</creator><creatorcontrib>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</creatorcontrib><description>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</description><identifier>ISSN: 2075-1680</identifier><identifier>EISSN: 2075-1680</identifier><identifier>DOI: 10.3390/axioms12040348</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Algorithms ; Artificial intelligence ; Artificial neural networks ; astrophysics ; convolutional neural networks ; Discovery and exploration ; Earth ; exoplanets ; Extrasolar planets ; Light ; Light curve ; Machine learning ; Neural networks ; Planet detection ; Telescopes ; Transit ; transits ; Trends</subject><ispartof>Axioms, 2023-04, Vol.12 (4), p.348</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</citedby><cites>FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</cites><orcidid>0000-0002-5826-9892 ; 0000-0002-2718-2022 ; 0000-0002-9660-7944 ; 0000-0001-5903-9899 ; 0000-0002-4249-1026 ; 0000-0002-7052-2811</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2806468341/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2806468341?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25752,27923,27924,37011,44589,74897</link.rule.ids></links><search><creatorcontrib>Iglesias Álvarez, Santiago</creatorcontrib><creatorcontrib>Díez Alonso, Enrique</creatorcontrib><creatorcontrib>Sánchez Rodríguez, María Luisa</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Sánchez Lasheras, Fernando</creatorcontrib><creatorcontrib>de Cos Juez, Francisco Javier</creatorcontrib><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><title>Axioms</title><description>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</description><subject>Algorithms</subject><subject>Artificial intelligence</subject><subject>Artificial neural networks</subject><subject>astrophysics</subject><subject>convolutional neural networks</subject><subject>Discovery and exploration</subject><subject>Earth</subject><subject>exoplanets</subject><subject>Extrasolar planets</subject><subject>Light</subject><subject>Light curve</subject><subject>Machine learning</subject><subject>Neural networks</subject><subject>Planet detection</subject><subject>Telescopes</subject><subject>Transit</subject><subject>transits</subject><subject>Trends</subject><issn>2075-1680</issn><issn>2075-1680</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVUU1PAjEQ3RhNJMjVM4nnxX5v90gAlYRITPDctKUlxWWLbVH891bW-DFzmJmXeS-TeUVxDcEI4xrcyqPzuwgRIAATflb0EKhoCRkH53_6y2IQ4xbkqCHmEPeKp2VryqnbmTY638pmOPHtm28OqZsezSGcSnr34SUOrQ_DqUlGJ9duhqsgM-3Uzo5-38jWpHhVXFjZRDP4rv3i-W62mjyUi-X9fDJelJpAlEpSM8Yx0hIpBY3WBgFlGTNG6gpbgjC1kjGIrKKUQkgB5lpVrOYV1JZTifvFvNNde7kV--B2MnwIL504AT5shAzJ6cYIiKBWHK2xRYpgizknCipbW6QtZRXJWjed1j7414OJSWz9IeQHRIE4YCRfSmDeGnVbG5lFXWt9ClLnXJud07411mV8XJEKAw5q-kvQwccYjP05EwLxZZv4bxv-BHAfi1c</recordid><startdate>20230401</startdate><enddate>20230401</enddate><creator>Iglesias Álvarez, Santiago</creator><creator>Díez Alonso, Enrique</creator><creator>Sánchez Rodríguez, María Luisa</creator><creator>Rodríguez Rodríguez, Javier</creator><creator>Sánchez Lasheras, Fernando</creator><creator>de Cos Juez, Francisco Javier</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-5826-9892</orcidid><orcidid>https://orcid.org/0000-0002-2718-2022</orcidid><orcidid>https://orcid.org/0000-0002-9660-7944</orcidid><orcidid>https://orcid.org/0000-0001-5903-9899</orcidid><orcidid>https://orcid.org/0000-0002-4249-1026</orcidid><orcidid>https://orcid.org/0000-0002-7052-2811</orcidid></search><sort><creationdate>20230401</creationdate><title>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</title><author>Iglesias Álvarez, Santiago ; Díez Alonso, Enrique ; Sánchez Rodríguez, María Luisa ; Rodríguez Rodríguez, Javier ; Sánchez Lasheras, Fernando ; de Cos Juez, Francisco Javier</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Algorithms</topic><topic>Artificial intelligence</topic><topic>Artificial neural networks</topic><topic>astrophysics</topic><topic>convolutional neural networks</topic><topic>Discovery and exploration</topic><topic>Earth</topic><topic>exoplanets</topic><topic>Extrasolar planets</topic><topic>Light</topic><topic>Light curve</topic><topic>Machine learning</topic><topic>Neural networks</topic><topic>Planet detection</topic><topic>Telescopes</topic><topic>Transit</topic><topic>transits</topic><topic>Trends</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Iglesias Álvarez, Santiago</creatorcontrib><creatorcontrib>Díez Alonso, Enrique</creatorcontrib><creatorcontrib>Sánchez Rodríguez, María Luisa</creatorcontrib><creatorcontrib>Rodríguez Rodríguez, Javier</creatorcontrib><creatorcontrib>Sánchez Lasheras, Fernando</creatorcontrib><creatorcontrib>de Cos Juez, Francisco Javier</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Axioms</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Iglesias Álvarez, Santiago</au><au>Díez Alonso, Enrique</au><au>Sánchez Rodríguez, María Luisa</au><au>Rodríguez Rodríguez, Javier</au><au>Sánchez Lasheras, Fernando</au><au>de Cos Juez, Francisco Javier</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets</atitle><jtitle>Axioms</jtitle><date>2023-04-01</date><risdate>2023</risdate><volume>12</volume><issue>4</issue><spage>348</spage><pages>348-</pages><issn>2075-1680</issn><eissn>2075-1680</eissn><abstract>The transit method is one of the most relevant exoplanet detection techniques, which consists of detecting periodic eclipses in the light curves of stars. This is not always easy due to the presence of noise in the light curves, which is induced, for example, by the response of a telescope to stellar flux. For this reason, we aimed to develop an artificial neural network model that is able to detect these transits in light curves obtained from different telescopes and surveys. We created artificial light curves with and without transits to try to mimic those expected for the extended mission of the Kepler telescope (K2) in order to train and validate a 1D convolutional neural network model, which was later tested, obtaining an accuracy of 99.02% and an estimated error (loss function) of 0.03. These results, among others, helped to confirm that the 1D CNN is a good choice for working with non-phased-folded Mandel and Agol light curves with transits. It also reduces the number of light curves that have to be visually inspected to decide if they present transit-like signals and decreases the time needed for analyzing each (with respect to traditional analysis).</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/axioms12040348</doi><orcidid>https://orcid.org/0000-0002-5826-9892</orcidid><orcidid>https://orcid.org/0000-0002-2718-2022</orcidid><orcidid>https://orcid.org/0000-0002-9660-7944</orcidid><orcidid>https://orcid.org/0000-0001-5903-9899</orcidid><orcidid>https://orcid.org/0000-0002-4249-1026</orcidid><orcidid>https://orcid.org/0000-0002-7052-2811</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-1680
ispartof Axioms, 2023-04, Vol.12 (4), p.348
issn 2075-1680
2075-1680
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_121cb82d3f2b43f3884b1bf9f2cf5674
source Publicly Available Content Database (Proquest) (PQ_SDU_P3)
subjects Algorithms
Artificial intelligence
Artificial neural networks
astrophysics
convolutional neural networks
Discovery and exploration
Earth
exoplanets
Extrasolar planets
Light
Light curve
Machine learning
Neural networks
Planet detection
Telescopes
Transit
transits
Trends
title One-Dimensional Convolutional Neural Networks for Detecting Transiting Exoplanets
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T12%3A46%3A30IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=One-Dimensional%20Convolutional%20Neural%20Networks%20for%20Detecting%20Transiting%20Exoplanets&rft.jtitle=Axioms&rft.au=Iglesias%20%C3%81lvarez,%20Santiago&rft.date=2023-04-01&rft.volume=12&rft.issue=4&rft.spage=348&rft.pages=348-&rft.issn=2075-1680&rft.eissn=2075-1680&rft_id=info:doi/10.3390/axioms12040348&rft_dat=%3Cgale_doaj_%3EA747308095%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c412t-4966832ca2bb1ecce20bf66eeac73f4235fa6612fb555115038cb769871cf85a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2806468341&rft_id=info:pmid/&rft_galeid=A747308095&rfr_iscdi=true