Loading…

Surface Texture Measurement on Complex Geometry Using Dual-Scan Positioning Strategy

In this paper, a surface measurement method based on dual-scan positioning strategy is presented to address the challenges of irregular surface patterns and complex geometries. A confocal sensor with an internal scanning mechanism was used in this study. By synchronizing the local scan, enabled by t...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2020-12, Vol.10 (23), p.8418
Main Authors: Cheng, Fang, Fu, Shaowei, Chen, Ziran
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, a surface measurement method based on dual-scan positioning strategy is presented to address the challenges of irregular surface patterns and complex geometries. A confocal sensor with an internal scanning mechanism was used in this study. By synchronizing the local scan, enabled by the internal actuator in the confocal sensor, and the global scans, enabled by external positioners, the developed system was able to perform noncontact line scan and area scan. Thus, this system was able to measure both surface roughness and surface uniformity. Unlike laboratory surface measurement equipment, the proposed system is reconfigurable for in situ measurement and able to scan free-form surfaces with a proper stand-off distance and approaching angle. For long-travel line scan, which is needed for rough surfaces, a surface form tracing algorithm was developed to ensure that the data were always captured within the sensing range of the confocal sensor. It was experimentally verified that in a scanning length of 100 mm, where the surface fluctuation in vertical direction is around 10 mm, the system was able to perform accurate surface measurement. For area scan, XY coordinates provided by the lateral positioning system and the Z coordinate captured by the confocal sensor were plotted into one coordinate system for 3D reconstruction. A coherence scanning interferometer and a confocal microscope were employed as the reference measurement systems to verify the performance of the proposed system in a scanning area of 1 mm by 1 mm. Experimental data showed that the proposed system was able to achieve comparable accuracy with laboratory systems. The measurement deviation was within 0.1 µm. Because line scan mechanisms are widely used in sensor design, the presented work can be generalized to expand the applications of line scan sensors.
ISSN:2076-3417
2076-3417
DOI:10.3390/app10238418