Loading…

Acetyl-11-Keto-Beta Boswellic Acid (AKBA) Protects Lens Epithelial Cells Against H2O2-Induced Oxidative Injury and Attenuates Cataract Progression by Activating Keap1/Nrf2/HO-1 Signaling

Age-related cataract (ARC) is one of the leading blinding eye diseases worldwide. Chronic oxidative stress and the apoptosis of human lens epithelial cells (HLECs) have been suggested to be the mechanism underlying cataract formation. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic triterpen...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in pharmacology 2022-07, Vol.13, p.927871-927871
Main Authors: Yang, Tianke, Lin, Xiaolei, Li, Hongzhe, Zhou, Xiyue, Fan, Fan, Yang, Jianing, Luo, Yi, Liu, Xin
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Age-related cataract (ARC) is one of the leading blinding eye diseases worldwide. Chronic oxidative stress and the apoptosis of human lens epithelial cells (HLECs) have been suggested to be the mechanism underlying cataract formation. Acetyl-11-keto-β-boswellic acid (AKBA) is a pentacyclic triterpene with antioxidative and antiapoptotic effects. In this study, we investigated the potential effects of AKBA on oxidative-induced HLECs injury and cataract formation. H 2 O 2 was used to simulate HLECs oxidative injury in vitro , and Na 2 SeO 3 was applied to establish an in vivo cataract model. In our current study, a cell counting kit-8 (CCK-8) assay was performed to evaluate the effects of H 2 O 2 and AKBA on cell viability in vitro . Intracellular reactive oxygen species (ROS) levels were measured with the ROS assay to verify the antioxidant capacity of AKBA. Apoptotic cells were detected and measured by TUNEL staining and flow cytometry, and quantitative real-time (qRT)-PCR and Western blotting were applied to examine the transcription and expression of apoptosis-related proteins. Furthermore, immunofluorescence staining was performed to locate factor-erythroid 2-related factor 2 (Nrf2), and the protein levels of Nrf2, kelch-like ECH-associated protein 1 (Keap1) and heme oxygenase-1 (HO-1) were determined by Western blotting. Finally, we observed the degree of lens opacity and performed hematoxylin-eosin (H&E) staining to assess the protective effect of AKBA on cataract formation in vivo . AKBA increased HLECs viability under H 2 O 2 stimulation, decreased intracellular ROS levels and alleviated the cell apoptosis rate in vitro . AKBA significantly decreased the expression of caspase-3 and Bax and increased the content of Bcl-2. The results of immunofluorescence and immunohistochemical staining proved that the expression and nuclear translocation of Nrf2 were activated with AKBA treatment in vivo and in vitro . Moreover, computational docking results showed that AKBA could bind specifically to the predicted Keap1/Nrf2 binding sites. After AKBA activation, Nrf2 dissociates from the Nrf2/Keap1 complex, translocates into the nucleus, and subsequently promotes HO-1 expression. In addition, AKBA attenuated lens opacity in selenite-induced cataracts. Overall, these findings indicated that AKBA alleviated oxidative injury and cataract formation by activating the Keap1/Nrf2/HO-1 cascade. Therefore, our current study highlights that AKBA may serve as a promising tre
ISSN:1663-9812
1663-9812
DOI:10.3389/fphar.2022.927871