Loading…
Tunability and Fano Resonance Properties in Different Types of One-Dimensional Superconductor Photonic Crystals
The Fano resonance and EIR properties in different topological one-dimensional superconductor photonic crystals has been investigated theoretically using the Transfer Matrix Method (TMM). Different types of periodic heterostructures are studied and they are designed by alternating pairs of supercond...
Saved in:
Published in: | Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2021-01, Vol.24 (4), p.1 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The Fano resonance and EIR properties in different topological one-dimensional superconductor photonic crystals has been investigated theoretically using the Transfer Matrix Method (TMM). Different types of periodic heterostructures are studied and they are designed by alternating pairs of superconductor materials such (Nb/BSCCO), (Rb3C60/ YBa2Cu3O7 ) and (K3C60/(BiPb)2Sr2Ca2Cu3Oy). All artificial periodic structures are sacked by dielectric cap layer at different induced fields. To exam the efficiency of the reported structures, different parameters are used for analysis such as layers thicknesses, temperature, angle of incidence, the kind of superconductor materials and the dielectric constant of the cap layer. The investigation results exhibit the presence of tunable Fano resonances and EIR resonance peak accompanied by asymmetrical line shape and they are very sensitive to the dielectric cap layer, the superconductor materials and the wave incidence angle. |
---|---|
ISSN: | 1516-1439 1980-5373 1980-5373 |
DOI: | 10.1590/1980-5373-mr-2020-0507 |