Loading…

Tunability and Fano Resonance Properties in Different Types of One-Dimensional Superconductor Photonic Crystals

The Fano resonance and EIR properties in different topological one-dimensional superconductor photonic crystals has been investigated theoretically using the Transfer Matrix Method (TMM). Different types of periodic heterostructures are studied and they are designed by alternating pairs of supercond...

Full description

Saved in:
Bibliographic Details
Published in:Materials research (São Carlos, São Paulo, Brazil) São Paulo, Brazil), 2021-01, Vol.24 (4), p.1
Main Authors: Aly, Arafa H., Mohamed, D., Matar, Z. S., Trabelsi, Y., Vigneswaran, D., Tayeboun, Fatima, Mohaseb, M. A.
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:The Fano resonance and EIR properties in different topological one-dimensional superconductor photonic crystals has been investigated theoretically using the Transfer Matrix Method (TMM). Different types of periodic heterostructures are studied and they are designed by alternating pairs of superconductor materials such (Nb/BSCCO), (Rb3C60/ YBa2Cu3O7 ) and (K3C60/(BiPb)2Sr2Ca2Cu3Oy). All artificial periodic structures are sacked by dielectric cap layer at different induced fields. To exam the efficiency of the reported structures, different parameters are used for analysis such as layers thicknesses, temperature, angle of incidence, the kind of superconductor materials and the dielectric constant of the cap layer. The investigation results exhibit the presence of tunable Fano resonances and EIR resonance peak accompanied by asymmetrical line shape and they are very sensitive to the dielectric cap layer, the superconductor materials and the wave incidence angle.
ISSN:1516-1439
1980-5373
1980-5373
DOI:10.1590/1980-5373-mr-2020-0507