Loading…

Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach

To evaluate the efficiency of a system involving wavy shapes of wall, numerical technique has been utilized in this article. The region between two wavy complex surfaces was fabricated from porous material and the working fluid is nanofluid (mixture of water with various shapes of alumina nanopartic...

Full description

Saved in:
Bibliographic Details
Published in:Case studies in thermal engineering 2023-05, Vol.45, p.102923, Article 102923
Main Authors: Tan, Xinhua, Altoum, Sami H., Othman, Hakeem A., Syam, Muhammed I., Salman, M.A., Musa, Awad
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03
cites cdi_FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03
container_end_page
container_issue
container_start_page 102923
container_title Case studies in thermal engineering
container_volume 45
creator Tan, Xinhua
Altoum, Sami H.
Othman, Hakeem A.
Syam, Muhammed I.
Salman, M.A.
Musa, Awad
description To evaluate the efficiency of a system involving wavy shapes of wall, numerical technique has been utilized in this article. The region between two wavy complex surfaces was fabricated from porous material and the working fluid is nanofluid (mixture of water with various shapes of alumina nanoparticles). The new terms related to porous media have been added according to Darcy law. The pressure terms were removed with defining stream function. The last form of equations contains two variables (θ and Ψ) which were solved via CVFEM. The results from the present code have been compared with previous article and good agreement was reported. With augmenting Ha, the speed of nanofluid decreases and Nu drops about 50.48% when Ra = 700. Considering greater buoyancy force makes Nu to increase about 61.36% when Ha = 0. The shape factor has a direct relation with the amount of conductivity, thus, Nu enhances about 11.97% with an increase of this factor when Ha = 15, Ra = 150.
doi_str_mv 10.1016/j.csite.2023.102923
format article
fullrecord <record><control><sourceid>elsevier_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_123f7d6411164c10b2de1d9ea34fb805</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><els_id>S2214157X23002290</els_id><doaj_id>oai_doaj_org_article_123f7d6411164c10b2de1d9ea34fb805</doaj_id><sourcerecordid>S2214157X23002290</sourcerecordid><originalsourceid>FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03</originalsourceid><addsrcrecordid>eNp9kE1r4zAQhk3ZQku3v6AX_YFkNZItx4c9LGU_CoVeWuhNjEejRkGxgmQ3dH99naQsPe1phhfeh5mnqm5ALkGC-bZZUgkjL5VUek5Up_RZdakU1Ato2ucvn_aL6rqUjZQSWr2Cur6s4uOa8xajwAHjWwlFJC8GHJKPU3DCx7QX-zCuwyB2KaepCB4opjJlPuaCpvzKTqzTKPYYo5jGEMPfMLyIYdpyDnRg73Y5Ia2_VuceY-Hrj3lVPf36-Xj7Z3H_8Pvu9sf9gmqox0XTG-gct5oNEsq21bJ3ZgVdbxpGBjIe5IpMr7U3nnrSrBrdtti5HpCkvqruTlyXcGN3OWwxv9mEwR6DlF8s5jFQZAtK-9aZGgBMTSB75Rhcx6hr369kM7P0iUU5lZLZ_-OBtAf_dmOP_u3Bvz35n1vfTy2e33wNnG2hMJtjFzLTON8R_tt_BwXAkgo</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach</title><source>Elsevier ScienceDirect Journals</source><creator>Tan, Xinhua ; Altoum, Sami H. ; Othman, Hakeem A. ; Syam, Muhammed I. ; Salman, M.A. ; Musa, Awad</creator><creatorcontrib>Tan, Xinhua ; Altoum, Sami H. ; Othman, Hakeem A. ; Syam, Muhammed I. ; Salman, M.A. ; Musa, Awad</creatorcontrib><description>To evaluate the efficiency of a system involving wavy shapes of wall, numerical technique has been utilized in this article. The region between two wavy complex surfaces was fabricated from porous material and the working fluid is nanofluid (mixture of water with various shapes of alumina nanoparticles). The new terms related to porous media have been added according to Darcy law. The pressure terms were removed with defining stream function. The last form of equations contains two variables (θ and Ψ) which were solved via CVFEM. The results from the present code have been compared with previous article and good agreement was reported. With augmenting Ha, the speed of nanofluid decreases and Nu drops about 50.48% when Ra = 700. Considering greater buoyancy force makes Nu to increase about 61.36% when Ha = 0. The shape factor has a direct relation with the amount of conductivity, thus, Nu enhances about 11.97% with an increase of this factor when Ha = 15, Ra = 150.</description><identifier>ISSN: 2214-157X</identifier><identifier>EISSN: 2214-157X</identifier><identifier>DOI: 10.1016/j.csite.2023.102923</identifier><language>eng</language><publisher>Elsevier Ltd</publisher><subject>Heat transfer ; Mixture of alumina-water ; Numerical modeling ; Permeability ; Stream function</subject><ispartof>Case studies in thermal engineering, 2023-05, Vol.45, p.102923, Article 102923</ispartof><rights>2023 The Authors</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03</citedby><cites>FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03</cites><orcidid>0000-0002-3616-1514</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktohtml>$$Uhttps://www.sciencedirect.com/science/article/pii/S2214157X23002290$$EHTML$$P50$$Gelsevier$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,3549,27924,27925,45780</link.rule.ids></links><search><creatorcontrib>Tan, Xinhua</creatorcontrib><creatorcontrib>Altoum, Sami H.</creatorcontrib><creatorcontrib>Othman, Hakeem A.</creatorcontrib><creatorcontrib>Syam, Muhammed I.</creatorcontrib><creatorcontrib>Salman, M.A.</creatorcontrib><creatorcontrib>Musa, Awad</creatorcontrib><title>Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach</title><title>Case studies in thermal engineering</title><description>To evaluate the efficiency of a system involving wavy shapes of wall, numerical technique has been utilized in this article. The region between two wavy complex surfaces was fabricated from porous material and the working fluid is nanofluid (mixture of water with various shapes of alumina nanoparticles). The new terms related to porous media have been added according to Darcy law. The pressure terms were removed with defining stream function. The last form of equations contains two variables (θ and Ψ) which were solved via CVFEM. The results from the present code have been compared with previous article and good agreement was reported. With augmenting Ha, the speed of nanofluid decreases and Nu drops about 50.48% when Ra = 700. Considering greater buoyancy force makes Nu to increase about 61.36% when Ha = 0. The shape factor has a direct relation with the amount of conductivity, thus, Nu enhances about 11.97% with an increase of this factor when Ha = 15, Ra = 150.</description><subject>Heat transfer</subject><subject>Mixture of alumina-water</subject><subject>Numerical modeling</subject><subject>Permeability</subject><subject>Stream function</subject><issn>2214-157X</issn><issn>2214-157X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNp9kE1r4zAQhk3ZQku3v6AX_YFkNZItx4c9LGU_CoVeWuhNjEejRkGxgmQ3dH99naQsPe1phhfeh5mnqm5ALkGC-bZZUgkjL5VUek5Up_RZdakU1Ato2ucvn_aL6rqUjZQSWr2Cur6s4uOa8xajwAHjWwlFJC8GHJKPU3DCx7QX-zCuwyB2KaepCB4opjJlPuaCpvzKTqzTKPYYo5jGEMPfMLyIYdpyDnRg73Y5Ia2_VuceY-Hrj3lVPf36-Xj7Z3H_8Pvu9sf9gmqox0XTG-gct5oNEsq21bJ3ZgVdbxpGBjIe5IpMr7U3nnrSrBrdtti5HpCkvqruTlyXcGN3OWwxv9mEwR6DlF8s5jFQZAtK-9aZGgBMTSB75Rhcx6hr369kM7P0iUU5lZLZ_-OBtAf_dmOP_u3Bvz35n1vfTy2e33wNnG2hMJtjFzLTON8R_tt_BwXAkgo</recordid><startdate>202305</startdate><enddate>202305</enddate><creator>Tan, Xinhua</creator><creator>Altoum, Sami H.</creator><creator>Othman, Hakeem A.</creator><creator>Syam, Muhammed I.</creator><creator>Salman, M.A.</creator><creator>Musa, Awad</creator><general>Elsevier Ltd</general><general>Elsevier</general><scope>6I.</scope><scope>AAFTH</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-3616-1514</orcidid></search><sort><creationdate>202305</creationdate><title>Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach</title><author>Tan, Xinhua ; Altoum, Sami H. ; Othman, Hakeem A. ; Syam, Muhammed I. ; Salman, M.A. ; Musa, Awad</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Heat transfer</topic><topic>Mixture of alumina-water</topic><topic>Numerical modeling</topic><topic>Permeability</topic><topic>Stream function</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Tan, Xinhua</creatorcontrib><creatorcontrib>Altoum, Sami H.</creatorcontrib><creatorcontrib>Othman, Hakeem A.</creatorcontrib><creatorcontrib>Syam, Muhammed I.</creatorcontrib><creatorcontrib>Salman, M.A.</creatorcontrib><creatorcontrib>Musa, Awad</creatorcontrib><collection>ScienceDirect Open Access Titles</collection><collection>Elsevier:ScienceDirect:Open Access</collection><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Case studies in thermal engineering</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Tan, Xinhua</au><au>Altoum, Sami H.</au><au>Othman, Hakeem A.</au><au>Syam, Muhammed I.</au><au>Salman, M.A.</au><au>Musa, Awad</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach</atitle><jtitle>Case studies in thermal engineering</jtitle><date>2023-05</date><risdate>2023</risdate><volume>45</volume><spage>102923</spage><pages>102923-</pages><artnum>102923</artnum><issn>2214-157X</issn><eissn>2214-157X</eissn><abstract>To evaluate the efficiency of a system involving wavy shapes of wall, numerical technique has been utilized in this article. The region between two wavy complex surfaces was fabricated from porous material and the working fluid is nanofluid (mixture of water with various shapes of alumina nanoparticles). The new terms related to porous media have been added according to Darcy law. The pressure terms were removed with defining stream function. The last form of equations contains two variables (θ and Ψ) which were solved via CVFEM. The results from the present code have been compared with previous article and good agreement was reported. With augmenting Ha, the speed of nanofluid decreases and Nu drops about 50.48% when Ra = 700. Considering greater buoyancy force makes Nu to increase about 61.36% when Ha = 0. The shape factor has a direct relation with the amount of conductivity, thus, Nu enhances about 11.97% with an increase of this factor when Ha = 15, Ra = 150.</abstract><pub>Elsevier Ltd</pub><doi>10.1016/j.csite.2023.102923</doi><orcidid>https://orcid.org/0000-0002-3616-1514</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2214-157X
ispartof Case studies in thermal engineering, 2023-05, Vol.45, p.102923, Article 102923
issn 2214-157X
2214-157X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_123f7d6411164c10b2de1d9ea34fb805
source Elsevier ScienceDirect Journals
subjects Heat transfer
Mixture of alumina-water
Numerical modeling
Permeability
Stream function
title Thermal analysis of nanofluid flow within porous enclosure with curved hot wall utilizing numerical approach
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T16%3A56%3A46IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-elsevier_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Thermal%20analysis%20of%20nanofluid%20flow%20within%20porous%20enclosure%20with%20curved%20hot%20wall%20utilizing%20numerical%20approach&rft.jtitle=Case%20studies%20in%20thermal%20engineering&rft.au=Tan,%20Xinhua&rft.date=2023-05&rft.volume=45&rft.spage=102923&rft.pages=102923-&rft.artnum=102923&rft.issn=2214-157X&rft.eissn=2214-157X&rft_id=info:doi/10.1016/j.csite.2023.102923&rft_dat=%3Celsevier_doaj_%3ES2214157X23002290%3C/elsevier_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c414t-5b619de73e6aca07730bd6819b65eae1c6f108c6b33f6fcbc3e25377a9db1ac03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true