Loading…
Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning
Search engines are significant tools for finding and retrieving information. Every day, many new web pages in various languages are added. The threats of cyberattacks are expanding rapidly with this massive volume of data. The majority of studies on the detection of malicious websites focus on Engli...
Saved in:
Published in: | Applied sciences 2024-10, Vol.14 (20), p.9222 |
---|---|
Main Authors: | , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c291t-b312901b8d498ba00de75b5d7b63c9ce3c4db0c7d487c6d742527c21a8ad482a3 |
container_end_page | |
container_issue | 20 |
container_start_page | 9222 |
container_title | Applied sciences |
container_volume | 14 |
creator | Aljabri, Malak Altamimi, Hanan S. Albelali, Shahd A. Al-Harbi, Maimunah Alhuraib, Haya T. Alotaibi, Najd K. Alahmadi, Amal A. Alhaidari, Fahd Mohammad, Rami Mustafa A. |
description | Search engines are significant tools for finding and retrieving information. Every day, many new web pages in various languages are added. The threats of cyberattacks are expanding rapidly with this massive volume of data. The majority of studies on the detection of malicious websites focus on English-language websites. This necessitates more studies on malicious detection on Arabic-content websites. In this research, we aimed to investigate the security of Arabic-content websites by developing a detection tool that analyzes Arabic content based on artificial intelligence (AI) techniques. We contributed to the field of cybersecurity and AI by building a new dataset of 4048 Arabic-content websites. We created and conducted a comparative performance evaluation for four different machine-learning (ML) models using feature extraction and selection techniques: extreme gradient boosting, support vector machines, decision trees, and random forests. The best-performing model was then integrated into a Chrome plugin, created based on a random forest (RF) model, and utilized the features selected via the chi-square technique. This produced plugin tool attained an accuracy of 92.96% for classifying Arabic-content websites as phishing, suspicious, or benign. To our knowledge, this is the first tool designed specifically for Arabic-content websites. |
doi_str_mv | 10.3390/app14209222 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_126ea7bb37304a9a9d1189bfe718436d</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A814380387</galeid><doaj_id>oai_doaj_org_article_126ea7bb37304a9a9d1189bfe718436d</doaj_id><sourcerecordid>A814380387</sourcerecordid><originalsourceid>FETCH-LOGICAL-c291t-b312901b8d498ba00de75b5d7b63c9ce3c4db0c7d487c6d742527c21a8ad482a3</originalsourceid><addsrcrecordid>eNpNkUtLQzEQhS-ioKgr_0DApVTz6k3irlx8YUUXiisJk8dtU9qkJreg_95oRZxZzHD45nBgmuaE4HPGFL6A9ZpwihWldKc5oFi0I8aJ2P237zfHpSxwLUWYJPigebuHMg_9JZqgbp7TyqOrj8HHElJEfcqoW0Ipof8McYYmGUywqEuxEgOqxKs36AlmvqCX8k08gJ2H6NHUQ45VOGr2elgWf_w7D5uX66vn7nY0fby56ybTkaWKDCPDCFWYGOm4kgYwdl6MzdgJ0zKrrGeWO4OtcFwK2zrB6ZgKSwlIqBIFdtjcbX1dgoVe57CC_KkTBP0jpDzTkIdgl14T2noQxjDBMAcFyhEilem9IJKz1lWv063XOqf3jS-DXqRNjjW-rjHxmCmu2kqdb6kZVNMQ-zRksLWdXwWbou9D1SeScCYxk6IenG0PbE6lZN__xSRYf_9P__sf-wIEcosC</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3120539496</pqid></control><display><type>article</type><title>Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning</title><source>Publicly Available Content (ProQuest)</source><creator>Aljabri, Malak ; Altamimi, Hanan S. ; Albelali, Shahd A. ; Al-Harbi, Maimunah ; Alhuraib, Haya T. ; Alotaibi, Najd K. ; Alahmadi, Amal A. ; Alhaidari, Fahd ; Mohammad, Rami Mustafa A.</creator><creatorcontrib>Aljabri, Malak ; Altamimi, Hanan S. ; Albelali, Shahd A. ; Al-Harbi, Maimunah ; Alhuraib, Haya T. ; Alotaibi, Najd K. ; Alahmadi, Amal A. ; Alhaidari, Fahd ; Mohammad, Rami Mustafa A.</creatorcontrib><description>Search engines are significant tools for finding and retrieving information. Every day, many new web pages in various languages are added. The threats of cyberattacks are expanding rapidly with this massive volume of data. The majority of studies on the detection of malicious websites focus on English-language websites. This necessitates more studies on malicious detection on Arabic-content websites. In this research, we aimed to investigate the security of Arabic-content websites by developing a detection tool that analyzes Arabic content based on artificial intelligence (AI) techniques. We contributed to the field of cybersecurity and AI by building a new dataset of 4048 Arabic-content websites. We created and conducted a comparative performance evaluation for four different machine-learning (ML) models using feature extraction and selection techniques: extreme gradient boosting, support vector machines, decision trees, and random forests. The best-performing model was then integrated into a Chrome plugin, created based on a random forest (RF) model, and utilized the features selected via the chi-square technique. This produced plugin tool attained an accuracy of 92.96% for classifying Arabic-content websites as phishing, suspicious, or benign. To our knowledge, this is the first tool designed specifically for Arabic-content websites.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app14209222</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Accuracy ; Algorithms ; Analysis ; Artificial intelligence ; benign ; Cybercrime ; Cybersecurity ; Cyberterrorism ; Datasets ; Deep learning ; Helium ; Identity theft ; International economic relations ; Internet ; Keywords ; Machine learning ; malicious ; Malware ; Neural networks ; Petroleum industry ; Phishing ; random forest ; Research methodology ; Support vector machines ; Trends ; URLs ; Web browsers ; Web sites</subject><ispartof>Applied sciences, 2024-10, Vol.14 (20), p.9222</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c291t-b312901b8d498ba00de75b5d7b63c9ce3c4db0c7d487c6d742527c21a8ad482a3</cites><orcidid>0000-0002-6371-1614 ; 0000-0003-4383-0269 ; 0000-0002-2612-1615 ; 0000-0001-7452-5473</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3120539496/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3120539496?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Aljabri, Malak</creatorcontrib><creatorcontrib>Altamimi, Hanan S.</creatorcontrib><creatorcontrib>Albelali, Shahd A.</creatorcontrib><creatorcontrib>Al-Harbi, Maimunah</creatorcontrib><creatorcontrib>Alhuraib, Haya T.</creatorcontrib><creatorcontrib>Alotaibi, Najd K.</creatorcontrib><creatorcontrib>Alahmadi, Amal A.</creatorcontrib><creatorcontrib>Alhaidari, Fahd</creatorcontrib><creatorcontrib>Mohammad, Rami Mustafa A.</creatorcontrib><title>Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning</title><title>Applied sciences</title><description>Search engines are significant tools for finding and retrieving information. Every day, many new web pages in various languages are added. The threats of cyberattacks are expanding rapidly with this massive volume of data. The majority of studies on the detection of malicious websites focus on English-language websites. This necessitates more studies on malicious detection on Arabic-content websites. In this research, we aimed to investigate the security of Arabic-content websites by developing a detection tool that analyzes Arabic content based on artificial intelligence (AI) techniques. We contributed to the field of cybersecurity and AI by building a new dataset of 4048 Arabic-content websites. We created and conducted a comparative performance evaluation for four different machine-learning (ML) models using feature extraction and selection techniques: extreme gradient boosting, support vector machines, decision trees, and random forests. The best-performing model was then integrated into a Chrome plugin, created based on a random forest (RF) model, and utilized the features selected via the chi-square technique. This produced plugin tool attained an accuracy of 92.96% for classifying Arabic-content websites as phishing, suspicious, or benign. To our knowledge, this is the first tool designed specifically for Arabic-content websites.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Analysis</subject><subject>Artificial intelligence</subject><subject>benign</subject><subject>Cybercrime</subject><subject>Cybersecurity</subject><subject>Cyberterrorism</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Helium</subject><subject>Identity theft</subject><subject>International economic relations</subject><subject>Internet</subject><subject>Keywords</subject><subject>Machine learning</subject><subject>malicious</subject><subject>Malware</subject><subject>Neural networks</subject><subject>Petroleum industry</subject><subject>Phishing</subject><subject>random forest</subject><subject>Research methodology</subject><subject>Support vector machines</subject><subject>Trends</subject><subject>URLs</subject><subject>Web browsers</subject><subject>Web sites</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkUtLQzEQhS-ioKgr_0DApVTz6k3irlx8YUUXiisJk8dtU9qkJreg_95oRZxZzHD45nBgmuaE4HPGFL6A9ZpwihWldKc5oFi0I8aJ2P237zfHpSxwLUWYJPigebuHMg_9JZqgbp7TyqOrj8HHElJEfcqoW0Ipof8McYYmGUywqEuxEgOqxKs36AlmvqCX8k08gJ2H6NHUQ45VOGr2elgWf_w7D5uX66vn7nY0fby56ybTkaWKDCPDCFWYGOm4kgYwdl6MzdgJ0zKrrGeWO4OtcFwK2zrB6ZgKSwlIqBIFdtjcbX1dgoVe57CC_KkTBP0jpDzTkIdgl14T2noQxjDBMAcFyhEilem9IJKz1lWv063XOqf3jS-DXqRNjjW-rjHxmCmu2kqdb6kZVNMQ-zRksLWdXwWbou9D1SeScCYxk6IenG0PbE6lZN__xSRYf_9P__sf-wIEcosC</recordid><startdate>20241001</startdate><enddate>20241001</enddate><creator>Aljabri, Malak</creator><creator>Altamimi, Hanan S.</creator><creator>Albelali, Shahd A.</creator><creator>Al-Harbi, Maimunah</creator><creator>Alhuraib, Haya T.</creator><creator>Alotaibi, Najd K.</creator><creator>Alahmadi, Amal A.</creator><creator>Alhaidari, Fahd</creator><creator>Mohammad, Rami Mustafa A.</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6371-1614</orcidid><orcidid>https://orcid.org/0000-0003-4383-0269</orcidid><orcidid>https://orcid.org/0000-0002-2612-1615</orcidid><orcidid>https://orcid.org/0000-0001-7452-5473</orcidid></search><sort><creationdate>20241001</creationdate><title>Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning</title><author>Aljabri, Malak ; Altamimi, Hanan S. ; Albelali, Shahd A. ; Al-Harbi, Maimunah ; Alhuraib, Haya T. ; Alotaibi, Najd K. ; Alahmadi, Amal A. ; Alhaidari, Fahd ; Mohammad, Rami Mustafa A.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c291t-b312901b8d498ba00de75b5d7b63c9ce3c4db0c7d487c6d742527c21a8ad482a3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Analysis</topic><topic>Artificial intelligence</topic><topic>benign</topic><topic>Cybercrime</topic><topic>Cybersecurity</topic><topic>Cyberterrorism</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Helium</topic><topic>Identity theft</topic><topic>International economic relations</topic><topic>Internet</topic><topic>Keywords</topic><topic>Machine learning</topic><topic>malicious</topic><topic>Malware</topic><topic>Neural networks</topic><topic>Petroleum industry</topic><topic>Phishing</topic><topic>random forest</topic><topic>Research methodology</topic><topic>Support vector machines</topic><topic>Trends</topic><topic>URLs</topic><topic>Web browsers</topic><topic>Web sites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Aljabri, Malak</creatorcontrib><creatorcontrib>Altamimi, Hanan S.</creatorcontrib><creatorcontrib>Albelali, Shahd A.</creatorcontrib><creatorcontrib>Al-Harbi, Maimunah</creatorcontrib><creatorcontrib>Alhuraib, Haya T.</creatorcontrib><creatorcontrib>Alotaibi, Najd K.</creatorcontrib><creatorcontrib>Alahmadi, Amal A.</creatorcontrib><creatorcontrib>Alhaidari, Fahd</creatorcontrib><creatorcontrib>Mohammad, Rami Mustafa A.</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Aljabri, Malak</au><au>Altamimi, Hanan S.</au><au>Albelali, Shahd A.</au><au>Al-Harbi, Maimunah</au><au>Alhuraib, Haya T.</au><au>Alotaibi, Najd K.</au><au>Alahmadi, Amal A.</au><au>Alhaidari, Fahd</au><au>Mohammad, Rami Mustafa A.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning</atitle><jtitle>Applied sciences</jtitle><date>2024-10-01</date><risdate>2024</risdate><volume>14</volume><issue>20</issue><spage>9222</spage><pages>9222-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>Search engines are significant tools for finding and retrieving information. Every day, many new web pages in various languages are added. The threats of cyberattacks are expanding rapidly with this massive volume of data. The majority of studies on the detection of malicious websites focus on English-language websites. This necessitates more studies on malicious detection on Arabic-content websites. In this research, we aimed to investigate the security of Arabic-content websites by developing a detection tool that analyzes Arabic content based on artificial intelligence (AI) techniques. We contributed to the field of cybersecurity and AI by building a new dataset of 4048 Arabic-content websites. We created and conducted a comparative performance evaluation for four different machine-learning (ML) models using feature extraction and selection techniques: extreme gradient boosting, support vector machines, decision trees, and random forests. The best-performing model was then integrated into a Chrome plugin, created based on a random forest (RF) model, and utilized the features selected via the chi-square technique. This produced plugin tool attained an accuracy of 92.96% for classifying Arabic-content websites as phishing, suspicious, or benign. To our knowledge, this is the first tool designed specifically for Arabic-content websites.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app14209222</doi><orcidid>https://orcid.org/0000-0002-6371-1614</orcidid><orcidid>https://orcid.org/0000-0003-4383-0269</orcidid><orcidid>https://orcid.org/0000-0002-2612-1615</orcidid><orcidid>https://orcid.org/0000-0001-7452-5473</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2024-10, Vol.14 (20), p.9222 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_126ea7bb37304a9a9d1189bfe718436d |
source | Publicly Available Content (ProQuest) |
subjects | Accuracy Algorithms Analysis Artificial intelligence benign Cybercrime Cybersecurity Cyberterrorism Datasets Deep learning Helium Identity theft International economic relations Internet Keywords Machine learning malicious Malware Neural networks Petroleum industry Phishing random forest Research methodology Support vector machines Trends URLs Web browsers Web sites |
title | Kashif: A Chrome Extension for Classifying Arabic Content on Web Pages Using Machine Learning |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-29T04%3A01%3A12IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Kashif:%20A%20Chrome%20Extension%20for%20Classifying%20Arabic%20Content%20on%20Web%20Pages%20Using%20Machine%20Learning&rft.jtitle=Applied%20sciences&rft.au=Aljabri,%20Malak&rft.date=2024-10-01&rft.volume=14&rft.issue=20&rft.spage=9222&rft.pages=9222-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app14209222&rft_dat=%3Cgale_doaj_%3EA814380387%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c291t-b312901b8d498ba00de75b5d7b63c9ce3c4db0c7d487c6d742527c21a8ad482a3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3120539496&rft_id=info:pmid/&rft_galeid=A814380387&rfr_iscdi=true |