Loading…

FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme

The residue number system is widely used in applications such as communication systems, cryptography, digital filters, digital signal processors, fault-tolerant detection, and so on. This paper proposes a multifunction modulo (2n ± 1) multiplier based on the radix-4 Booth encoding scheme that can op...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2023-09, Vol.13 (18), p.10407
Main Authors: Kuo, Chao-Tsung, Wu, Yao-Cheng
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63
cites cdi_FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63
container_end_page
container_issue 18
container_start_page 10407
container_title Applied sciences
container_volume 13
creator Kuo, Chao-Tsung
Wu, Yao-Cheng
description The residue number system is widely used in applications such as communication systems, cryptography, digital filters, digital signal processors, fault-tolerant detection, and so on. This paper proposes a multifunction modulo (2n ± 1) multiplier based on the radix-4 Booth encoding scheme that can operate both modulo (2n − 1) and modulo (2n + 1) multipliers using the same hardware structure with only one control signal. A novel modulo (2n ± 1) multiplier based on radix-4 Booth encoding is proposed that can achieve superior performance, with low power, fast operation, high area efficiency, and low area-delay product (ADP) and power-delay product (PDP) compared with similar modified Booth-encoding methods. In addition, by integrating the separate modulo functions of the modulo (2n − 1) multiplier and modulo (2n + 1) multiplier into a single multifunction modulo (2n ± 1) multiplier, the proposed method can save up to 52.59% (n = 16) of hardware area, up to 5.45% (n = 32) of delay time, up to 49.05% (n = 16) of dynamic power, up to 50.92% (n = 32) of ADP, and up to 50.02% (n = 32) of PDP compared with the original separate circuits merged together. Furthermore, the operation ranges of the multiplicand and multiplier of the proposed modulo (2n + 1) multiplier and modulo (2n − 1) multiplier are {0, 2n + 1} and {0, 2n}, respectively, which are wider than for other reported hardware structures. The hardware area, power consumption, and delay time are simulated and verified using Verilog HDL and Xilinx FPGA (Field Programmable Gate Array) Vivado tools. The Xilinx Artix-7 XC7A35T-CSG324-1 FPGA chipset is adopted in the proposed work.
doi_str_mv 10.3390/app131810407
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12a5179b92ef423ca60c36f8f164852a</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A766925993</galeid><doaj_id>oai_doaj_org_article_12a5179b92ef423ca60c36f8f164852a</doaj_id><sourcerecordid>A766925993</sourcerecordid><originalsourceid>FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63</originalsourceid><addsrcrecordid>eNpNkc1O3DAUhaOqlYqAHQ9gqZtWaqj_HS8HNMBI0FalrK0bxx48ytjBSRB9rL5Cn6yGVBXe-Orccz4d6VbVCcGnjGn8BYaBMNIQzLF6Ux1QrGTNOFFvX83vq-Nx3OHyNGHFelD1F98vV2izH3q3d3GCKaSIkkeAvqZH16ObuZ-Cn6N9Wdykbu4T-kgj-vMbkU_LeuiDy-huDHGLfkAXnmqOzlKa7tE62tQ9y7f2vvCPqnce-tEd__sPq7uL9c_zq_r62-XmfHVdW47lVAPFvusw514J4TRpsWtto4TGYKHMbVd8tHUCcyGLVYLiDbNYKCeUBskOq83C7RLszJDDHvIvkyCYFyHlrYE8Bds7QygIonSrqfOcMgsSWyZ944nkjaBQWB8W1pDTw-zGyezSnGOpb2gjNWWacFVcp4trCwUaok9TLmUtdG4fbIrOh6KvlCwJoTUrgc9LwOY0jtn5_zUJNs_3NK_vyf4CWOOQtQ</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2869239147</pqid></control><display><type>article</type><title>FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme</title><source>Publicly Available Content Database</source><creator>Kuo, Chao-Tsung ; Wu, Yao-Cheng</creator><creatorcontrib>Kuo, Chao-Tsung ; Wu, Yao-Cheng</creatorcontrib><description>The residue number system is widely used in applications such as communication systems, cryptography, digital filters, digital signal processors, fault-tolerant detection, and so on. This paper proposes a multifunction modulo (2n ± 1) multiplier based on the radix-4 Booth encoding scheme that can operate both modulo (2n − 1) and modulo (2n + 1) multipliers using the same hardware structure with only one control signal. A novel modulo (2n ± 1) multiplier based on radix-4 Booth encoding is proposed that can achieve superior performance, with low power, fast operation, high area efficiency, and low area-delay product (ADP) and power-delay product (PDP) compared with similar modified Booth-encoding methods. In addition, by integrating the separate modulo functions of the modulo (2n − 1) multiplier and modulo (2n + 1) multiplier into a single multifunction modulo (2n ± 1) multiplier, the proposed method can save up to 52.59% (n = 16) of hardware area, up to 5.45% (n = 32) of delay time, up to 49.05% (n = 16) of dynamic power, up to 50.92% (n = 32) of ADP, and up to 50.02% (n = 32) of PDP compared with the original separate circuits merged together. Furthermore, the operation ranges of the multiplicand and multiplier of the proposed modulo (2n + 1) multiplier and modulo (2n − 1) multiplier are {0, 2n + 1} and {0, 2n}, respectively, which are wider than for other reported hardware structures. The hardware area, power consumption, and delay time are simulated and verified using Verilog HDL and Xilinx FPGA (Field Programmable Gate Array) Vivado tools. The Xilinx Artix-7 XC7A35T-CSG324-1 FPGA chipset is adopted in the proposed work.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app131810407</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Data encryption ; Design ; Digital integrated circuits ; Digital signal processors ; Field programmable gate arrays ; FPGA design ; modulo (2n ± 1) multiplier ; Multiplication &amp; division ; Number systems ; parallel prefix adder ; Product development ; radix-4 Booth encoding ; Read only memory ; residue number system ; ROM ; Semiconductor industry ; Technology application</subject><ispartof>Applied sciences, 2023-09, Vol.13 (18), p.10407</ispartof><rights>COPYRIGHT 2023 MDPI AG</rights><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63</citedby><cites>FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2869239147/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2869239147?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,75126</link.rule.ids></links><search><creatorcontrib>Kuo, Chao-Tsung</creatorcontrib><creatorcontrib>Wu, Yao-Cheng</creatorcontrib><title>FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme</title><title>Applied sciences</title><description>The residue number system is widely used in applications such as communication systems, cryptography, digital filters, digital signal processors, fault-tolerant detection, and so on. This paper proposes a multifunction modulo (2n ± 1) multiplier based on the radix-4 Booth encoding scheme that can operate both modulo (2n − 1) and modulo (2n + 1) multipliers using the same hardware structure with only one control signal. A novel modulo (2n ± 1) multiplier based on radix-4 Booth encoding is proposed that can achieve superior performance, with low power, fast operation, high area efficiency, and low area-delay product (ADP) and power-delay product (PDP) compared with similar modified Booth-encoding methods. In addition, by integrating the separate modulo functions of the modulo (2n − 1) multiplier and modulo (2n + 1) multiplier into a single multifunction modulo (2n ± 1) multiplier, the proposed method can save up to 52.59% (n = 16) of hardware area, up to 5.45% (n = 32) of delay time, up to 49.05% (n = 16) of dynamic power, up to 50.92% (n = 32) of ADP, and up to 50.02% (n = 32) of PDP compared with the original separate circuits merged together. Furthermore, the operation ranges of the multiplicand and multiplier of the proposed modulo (2n + 1) multiplier and modulo (2n − 1) multiplier are {0, 2n + 1} and {0, 2n}, respectively, which are wider than for other reported hardware structures. The hardware area, power consumption, and delay time are simulated and verified using Verilog HDL and Xilinx FPGA (Field Programmable Gate Array) Vivado tools. The Xilinx Artix-7 XC7A35T-CSG324-1 FPGA chipset is adopted in the proposed work.</description><subject>Data encryption</subject><subject>Design</subject><subject>Digital integrated circuits</subject><subject>Digital signal processors</subject><subject>Field programmable gate arrays</subject><subject>FPGA design</subject><subject>modulo (2n ± 1) multiplier</subject><subject>Multiplication &amp; division</subject><subject>Number systems</subject><subject>parallel prefix adder</subject><subject>Product development</subject><subject>radix-4 Booth encoding</subject><subject>Read only memory</subject><subject>residue number system</subject><subject>ROM</subject><subject>Semiconductor industry</subject><subject>Technology application</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkc1O3DAUhaOqlYqAHQ9gqZtWaqj_HS8HNMBI0FalrK0bxx48ytjBSRB9rL5Cn6yGVBXe-Orccz4d6VbVCcGnjGn8BYaBMNIQzLF6Ux1QrGTNOFFvX83vq-Nx3OHyNGHFelD1F98vV2izH3q3d3GCKaSIkkeAvqZH16ObuZ-Cn6N9Wdykbu4T-kgj-vMbkU_LeuiDy-huDHGLfkAXnmqOzlKa7tE62tQ9y7f2vvCPqnce-tEd__sPq7uL9c_zq_r62-XmfHVdW47lVAPFvusw514J4TRpsWtto4TGYKHMbVd8tHUCcyGLVYLiDbNYKCeUBskOq83C7RLszJDDHvIvkyCYFyHlrYE8Bds7QygIonSrqfOcMgsSWyZ944nkjaBQWB8W1pDTw-zGyezSnGOpb2gjNWWacFVcp4trCwUaok9TLmUtdG4fbIrOh6KvlCwJoTUrgc9LwOY0jtn5_zUJNs_3NK_vyf4CWOOQtQ</recordid><startdate>20230901</startdate><enddate>20230901</enddate><creator>Kuo, Chao-Tsung</creator><creator>Wu, Yao-Cheng</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>DOA</scope></search><sort><creationdate>20230901</creationdate><title>FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme</title><author>Kuo, Chao-Tsung ; Wu, Yao-Cheng</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Data encryption</topic><topic>Design</topic><topic>Digital integrated circuits</topic><topic>Digital signal processors</topic><topic>Field programmable gate arrays</topic><topic>FPGA design</topic><topic>modulo (2n ± 1) multiplier</topic><topic>Multiplication &amp; division</topic><topic>Number systems</topic><topic>parallel prefix adder</topic><topic>Product development</topic><topic>radix-4 Booth encoding</topic><topic>Read only memory</topic><topic>residue number system</topic><topic>ROM</topic><topic>Semiconductor industry</topic><topic>Technology application</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kuo, Chao-Tsung</creatorcontrib><creatorcontrib>Wu, Yao-Cheng</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kuo, Chao-Tsung</au><au>Wu, Yao-Cheng</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme</atitle><jtitle>Applied sciences</jtitle><date>2023-09-01</date><risdate>2023</risdate><volume>13</volume><issue>18</issue><spage>10407</spage><pages>10407-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The residue number system is widely used in applications such as communication systems, cryptography, digital filters, digital signal processors, fault-tolerant detection, and so on. This paper proposes a multifunction modulo (2n ± 1) multiplier based on the radix-4 Booth encoding scheme that can operate both modulo (2n − 1) and modulo (2n + 1) multipliers using the same hardware structure with only one control signal. A novel modulo (2n ± 1) multiplier based on radix-4 Booth encoding is proposed that can achieve superior performance, with low power, fast operation, high area efficiency, and low area-delay product (ADP) and power-delay product (PDP) compared with similar modified Booth-encoding methods. In addition, by integrating the separate modulo functions of the modulo (2n − 1) multiplier and modulo (2n + 1) multiplier into a single multifunction modulo (2n ± 1) multiplier, the proposed method can save up to 52.59% (n = 16) of hardware area, up to 5.45% (n = 32) of delay time, up to 49.05% (n = 16) of dynamic power, up to 50.92% (n = 32) of ADP, and up to 50.02% (n = 32) of PDP compared with the original separate circuits merged together. Furthermore, the operation ranges of the multiplicand and multiplier of the proposed modulo (2n + 1) multiplier and modulo (2n − 1) multiplier are {0, 2n + 1} and {0, 2n}, respectively, which are wider than for other reported hardware structures. The hardware area, power consumption, and delay time are simulated and verified using Verilog HDL and Xilinx FPGA (Field Programmable Gate Array) Vivado tools. The Xilinx Artix-7 XC7A35T-CSG324-1 FPGA chipset is adopted in the proposed work.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app131810407</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2023-09, Vol.13 (18), p.10407
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_12a5179b92ef423ca60c36f8f164852a
source Publicly Available Content Database
subjects Data encryption
Design
Digital integrated circuits
Digital signal processors
Field programmable gate arrays
FPGA design
modulo (2n ± 1) multiplier
Multiplication & division
Number systems
parallel prefix adder
Product development
radix-4 Booth encoding
Read only memory
residue number system
ROM
Semiconductor industry
Technology application
title FPGA Implementation of a Novel Multifunction Modulo (2n ± 1) Multiplier Using Radix-4 Booth Encoding Scheme
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-06T15%3A11%3A08IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=FPGA%20Implementation%20of%20a%20Novel%20Multifunction%20Modulo%20(2n%20%C2%B1%201)%20Multiplier%20Using%20Radix-4%20Booth%20Encoding%20Scheme&rft.jtitle=Applied%20sciences&rft.au=Kuo,%20Chao-Tsung&rft.date=2023-09-01&rft.volume=13&rft.issue=18&rft.spage=10407&rft.pages=10407-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app131810407&rft_dat=%3Cgale_doaj_%3EA766925993%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c406t-a20fdd044f755e91b0ebc87590aca0ebbdc402be504560fd6a7483c057e579a63%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2869239147&rft_id=info:pmid/&rft_galeid=A766925993&rfr_iscdi=true