Loading…
Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer
Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applica...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2018-10, Vol.8 (10), p.832 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493 |
---|---|
cites | cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493 |
container_end_page | |
container_issue | 10 |
container_start_page | 832 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 8 |
creator | Li, Xiaoyin Zhang, Shunhong Guo, Yaguang Wang, Fancy Qian Wang, Qian |
description | Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V
s
) and strong optical absorption (~10⁵ cm
) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices. |
doi_str_mv | 10.3390/nano8100832 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85</doaj_id><sourcerecordid>2120750105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</originalsourceid><addsrcrecordid>eNpVUU1rGzEQFaWlCW5OvZc9Fopbfa0-LoUQ2iaQUkNaehSSdtZWkKWttA746v7T_JKs6zQ4c5lh5vHezDyE3hL8kTGNPyWbsiIYK0ZfoFOKpZ5zrcnLo_oEndV6i6fQhKmWvUYnDDNKiW5P0e_FaluDt7FZlDxAGQPUxqauWazymO9yHG3wzfkwxAk0hpya3Dc3sA4-p27jx5CWzaK73-1u4H73t_meU452C-UNetXbWOHsMc_Qr69ffl5czq9_fLu6OL-ee87lOHdcCU9BUUF6LzDphaSybVXPFem0dURg10nhPHdUe6l7rLykvGO8cz3jms3Q1YG3y_bWDCWsbdmabIP518hlaex0lI9gCHUKJG0945YL4ZwV3PrWggOQMD1mhj4fuIaNW0PnIY3FxmekzycprMwy3xlBSUvFfpn3jwQl_9lAHc06VA8x2gR5Uw0lkyktJniv9eEA9SXXWqB_kiHY7J01R85O6HfHmz1h__vIHgBmI6IM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120750105</pqid></control><display><type>article</type><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</creator><creatorcontrib>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</creatorcontrib><description>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V
s
) and strong optical absorption (~10⁵ cm
) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano8100832</identifier><identifier>PMID: 30322195</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>first principles calculations ; light-harvesting performance ; palladium selenide monolayer ; physical properties ; type-II heterostructure</subject><ispartof>Nanomaterials (Basel, Switzerland), 2018-10, Vol.8 (10), p.832</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</citedby><cites>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</cites><orcidid>0000-0002-6837-7766 ; 0000-0003-2120-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27898,27899,36987,53763,53765</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30322195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaoyin</creatorcontrib><creatorcontrib>Zhang, Shunhong</creatorcontrib><creatorcontrib>Guo, Yaguang</creatorcontrib><creatorcontrib>Wang, Fancy Qian</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V
s
) and strong optical absorption (~10⁵ cm
) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</description><subject>first principles calculations</subject><subject>light-harvesting performance</subject><subject>palladium selenide monolayer</subject><subject>physical properties</subject><subject>type-II heterostructure</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEQFaWlCW5OvZc9Fopbfa0-LoUQ2iaQUkNaehSSdtZWkKWttA746v7T_JKs6zQ4c5lh5vHezDyE3hL8kTGNPyWbsiIYK0ZfoFOKpZ5zrcnLo_oEndV6i6fQhKmWvUYnDDNKiW5P0e_FaluDt7FZlDxAGQPUxqauWazymO9yHG3wzfkwxAk0hpya3Dc3sA4-p27jx5CWzaK73-1u4H73t_meU452C-UNetXbWOHsMc_Qr69ffl5czq9_fLu6OL-ee87lOHdcCU9BUUF6LzDphaSybVXPFem0dURg10nhPHdUe6l7rLykvGO8cz3jms3Q1YG3y_bWDCWsbdmabIP518hlaex0lI9gCHUKJG0945YL4ZwV3PrWggOQMD1mhj4fuIaNW0PnIY3FxmekzycprMwy3xlBSUvFfpn3jwQl_9lAHc06VA8x2gR5Uw0lkyktJniv9eEA9SXXWqB_kiHY7J01R85O6HfHmz1h__vIHgBmI6IM</recordid><startdate>20181014</startdate><enddate>20181014</enddate><creator>Li, Xiaoyin</creator><creator>Zhang, Shunhong</creator><creator>Guo, Yaguang</creator><creator>Wang, Fancy Qian</creator><creator>Wang, Qian</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6837-7766</orcidid><orcidid>https://orcid.org/0000-0003-2120-4574</orcidid></search><sort><creationdate>20181014</creationdate><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><author>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>first principles calculations</topic><topic>light-harvesting performance</topic><topic>palladium selenide monolayer</topic><topic>physical properties</topic><topic>type-II heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoyin</creatorcontrib><creatorcontrib>Zhang, Shunhong</creatorcontrib><creatorcontrib>Guo, Yaguang</creatorcontrib><creatorcontrib>Wang, Fancy Qian</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoyin</au><au>Zhang, Shunhong</au><au>Guo, Yaguang</au><au>Wang, Fancy Qian</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2018-10-14</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>832</spage><pages>832-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V
s
) and strong optical absorption (~10⁵ cm
) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30322195</pmid><doi>10.3390/nano8100832</doi><orcidid>https://orcid.org/0000-0002-6837-7766</orcidid><orcidid>https://orcid.org/0000-0003-2120-4574</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2018-10, Vol.8 (10), p.832 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85 |
source | Publicly Available Content Database; IngentaConnect Journals; PubMed Central |
subjects | first principles calculations light-harvesting performance palladium selenide monolayer physical properties type-II heterostructure |
title | Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T19%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Properties%20and%20Photovoltaic%20Application%20of%20Semiconducting%20Pd%E2%82%82Se%E2%82%83%20Monolayer&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Li,%20Xiaoyin&rft.date=2018-10-14&rft.volume=8&rft.issue=10&rft.spage=832&rft.pages=832-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano8100832&rft_dat=%3Cproquest_doaj_%3E2120750105%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120750105&rft_id=info:pmid/30322195&rfr_iscdi=true |