Loading…

Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer

Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applica...

Full description

Saved in:
Bibliographic Details
Published in:Nanomaterials (Basel, Switzerland) Switzerland), 2018-10, Vol.8 (10), p.832
Main Authors: Li, Xiaoyin, Zhang, Shunhong, Guo, Yaguang, Wang, Fancy Qian, Wang, Qian
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493
cites cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493
container_end_page
container_issue 10
container_start_page 832
container_title Nanomaterials (Basel, Switzerland)
container_volume 8
creator Li, Xiaoyin
Zhang, Shunhong
Guo, Yaguang
Wang, Fancy Qian
Wang, Qian
description Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V s ) and strong optical absorption (~10⁵ cm ) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.
doi_str_mv 10.3390/nano8100832
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85</doaj_id><sourcerecordid>2120750105</sourcerecordid><originalsourceid>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</originalsourceid><addsrcrecordid>eNpVUU1rGzEQFaWlCW5OvZc9Fopbfa0-LoUQ2iaQUkNaehSSdtZWkKWttA746v7T_JKs6zQ4c5lh5vHezDyE3hL8kTGNPyWbsiIYK0ZfoFOKpZ5zrcnLo_oEndV6i6fQhKmWvUYnDDNKiW5P0e_FaluDt7FZlDxAGQPUxqauWazymO9yHG3wzfkwxAk0hpya3Dc3sA4-p27jx5CWzaK73-1u4H73t_meU452C-UNetXbWOHsMc_Qr69ffl5czq9_fLu6OL-ee87lOHdcCU9BUUF6LzDphaSybVXPFem0dURg10nhPHdUe6l7rLykvGO8cz3jms3Q1YG3y_bWDCWsbdmabIP518hlaex0lI9gCHUKJG0945YL4ZwV3PrWggOQMD1mhj4fuIaNW0PnIY3FxmekzycprMwy3xlBSUvFfpn3jwQl_9lAHc06VA8x2gR5Uw0lkyktJniv9eEA9SXXWqB_kiHY7J01R85O6HfHmz1h__vIHgBmI6IM</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2120750105</pqid></control><display><type>article</type><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><source>Publicly Available Content Database</source><source>IngentaConnect Journals</source><source>PubMed Central</source><creator>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</creator><creatorcontrib>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</creatorcontrib><description>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V s ) and strong optical absorption (~10⁵ cm ) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano8100832</identifier><identifier>PMID: 30322195</identifier><language>eng</language><publisher>Switzerland: MDPI</publisher><subject>first principles calculations ; light-harvesting performance ; palladium selenide monolayer ; physical properties ; type-II heterostructure</subject><ispartof>Nanomaterials (Basel, Switzerland), 2018-10, Vol.8 (10), p.832</ispartof><rights>2018 by the authors. 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</citedby><cites>FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</cites><orcidid>0000-0002-6837-7766 ; 0000-0003-2120-4574</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215269/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6215269/$$EHTML$$P50$$Gpubmedcentral$$Hfree_for_read</linktohtml><link.rule.ids>230,314,723,776,780,881,27898,27899,36987,53763,53765</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30322195$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Li, Xiaoyin</creatorcontrib><creatorcontrib>Zhang, Shunhong</creatorcontrib><creatorcontrib>Guo, Yaguang</creatorcontrib><creatorcontrib>Wang, Fancy Qian</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><title>Nanomaterials (Basel, Switzerland)</title><addtitle>Nanomaterials (Basel)</addtitle><description>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V s ) and strong optical absorption (~10⁵ cm ) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</description><subject>first principles calculations</subject><subject>light-harvesting performance</subject><subject>palladium selenide monolayer</subject><subject>physical properties</subject><subject>type-II heterostructure</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpVUU1rGzEQFaWlCW5OvZc9Fopbfa0-LoUQ2iaQUkNaehSSdtZWkKWttA746v7T_JKs6zQ4c5lh5vHezDyE3hL8kTGNPyWbsiIYK0ZfoFOKpZ5zrcnLo_oEndV6i6fQhKmWvUYnDDNKiW5P0e_FaluDt7FZlDxAGQPUxqauWazymO9yHG3wzfkwxAk0hpya3Dc3sA4-p27jx5CWzaK73-1u4H73t_meU452C-UNetXbWOHsMc_Qr69ffl5czq9_fLu6OL-ee87lOHdcCU9BUUF6LzDphaSybVXPFem0dURg10nhPHdUe6l7rLykvGO8cz3jms3Q1YG3y_bWDCWsbdmabIP518hlaex0lI9gCHUKJG0945YL4ZwV3PrWggOQMD1mhj4fuIaNW0PnIY3FxmekzycprMwy3xlBSUvFfpn3jwQl_9lAHc06VA8x2gR5Uw0lkyktJniv9eEA9SXXWqB_kiHY7J01R85O6HfHmz1h__vIHgBmI6IM</recordid><startdate>20181014</startdate><enddate>20181014</enddate><creator>Li, Xiaoyin</creator><creator>Zhang, Shunhong</creator><creator>Guo, Yaguang</creator><creator>Wang, Fancy Qian</creator><creator>Wang, Qian</creator><general>MDPI</general><general>MDPI AG</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6837-7766</orcidid><orcidid>https://orcid.org/0000-0003-2120-4574</orcidid></search><sort><creationdate>20181014</creationdate><title>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</title><author>Li, Xiaoyin ; Zhang, Shunhong ; Guo, Yaguang ; Wang, Fancy Qian ; Wang, Qian</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>first principles calculations</topic><topic>light-harvesting performance</topic><topic>palladium selenide monolayer</topic><topic>physical properties</topic><topic>type-II heterostructure</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Xiaoyin</creatorcontrib><creatorcontrib>Zhang, Shunhong</creatorcontrib><creatorcontrib>Guo, Yaguang</creatorcontrib><creatorcontrib>Wang, Fancy Qian</creatorcontrib><creatorcontrib>Wang, Qian</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Xiaoyin</au><au>Zhang, Shunhong</au><au>Guo, Yaguang</au><au>Wang, Fancy Qian</au><au>Wang, Qian</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><addtitle>Nanomaterials (Basel)</addtitle><date>2018-10-14</date><risdate>2018</risdate><volume>8</volume><issue>10</issue><spage>832</spage><pages>832-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Palladium selenides have attracted considerable attention because of their intriguing properties and wide applications. Motivated by the successful synthesis of Pd₂Se₃ monolayer (Lin et al., Phys. Rev. Lett., 2017, 119, 016101), here we systematically study its physical properties and device applications using state-of-the-art first principles calculations. We demonstrate that the Pd₂Se₃ monolayer has a desirable quasi-direct band gap (1.39 eV) for light absorption, a high electron mobility (140.4 cm²V s ) and strong optical absorption (~10⁵ cm ) in the visible solar spectrum, showing a great potential for absorber material in ultrathin photovoltaic devices. Furthermore, its bandgap can be tuned by applying biaxial strain, changing from indirect to direct. Equally important, replacing Se with S results in a stable Pd₂S₃ monolayer that can form a type-II heterostructure with the Pd₂Se₃ monolayer by vertically stacking them together. The power conversion efficiency (PCE) of the heterostructure-based solar cell reaches 20%, higher than that of MoS₂/MoSe₂ solar cell. Our study would motivate experimental efforts in achieving Pd₂Se₃ monolayer-based heterostructures for new efficient photovoltaic devices.</abstract><cop>Switzerland</cop><pub>MDPI</pub><pmid>30322195</pmid><doi>10.3390/nano8100832</doi><orcidid>https://orcid.org/0000-0002-6837-7766</orcidid><orcidid>https://orcid.org/0000-0003-2120-4574</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2079-4991
ispartof Nanomaterials (Basel, Switzerland), 2018-10, Vol.8 (10), p.832
issn 2079-4991
2079-4991
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_12b8e725c34a466bba64ac5aebee7e85
source Publicly Available Content Database; IngentaConnect Journals; PubMed Central
subjects first principles calculations
light-harvesting performance
palladium selenide monolayer
physical properties
type-II heterostructure
title Physical Properties and Photovoltaic Application of Semiconducting Pd₂Se₃ Monolayer
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-03-05T19%3A06%3A37IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Physical%20Properties%20and%20Photovoltaic%20Application%20of%20Semiconducting%20Pd%E2%82%82Se%E2%82%83%20Monolayer&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Li,%20Xiaoyin&rft.date=2018-10-14&rft.volume=8&rft.issue=10&rft.spage=832&rft.pages=832-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano8100832&rft_dat=%3Cproquest_doaj_%3E2120750105%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c447t-b486c2e8261fc601f6727558f481d9ab160bd76bc4b29c79f08c724d34dbf3493%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2120750105&rft_id=info:pmid/30322195&rfr_iscdi=true