Loading…

Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method

Thermal protection systems (TPSs) are important components of reusable spacecraft, and their assembly quality has a crucial impact on flight safety. Owing to the complex assembly process and variable states of spacecraft thermal protection systems, assembly parameters may vary under different assemb...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in physics 2024-10, Vol.12
Main Authors: Liu, Yue, Li, Lijuan, Lin, Xuezhu, Guo, Lili, Sun, Jing, Wang, Hao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c236t-40f73172d1b9e0cfe26b02d5c0c674626c67be94225ff5a8fb9f7a156696b36f3
container_end_page
container_issue
container_start_page
container_title Frontiers in physics
container_volume 12
creator Liu, Yue
Li, Lijuan
Lin, Xuezhu
Guo, Lili
Sun, Jing
Wang, Hao
description Thermal protection systems (TPSs) are important components of reusable spacecraft, and their assembly quality has a crucial impact on flight safety. Owing to the complex assembly process and variable states of spacecraft thermal protection systems, assembly parameters may vary under different assembly states. Therefore, to obtain assembly parameters accurately and efficiently under different assembly states, in this study, 3D point cloud data and fiber optic sensor data were fused to develop an assembly parameter update method for assembly process state changes. Firstly, based on the measured data of thermal protection components and load-bearing structure, the gap, flush and matching parameters solution model are proposed. Secondly, to address the deformation problem of the load-bearing structure caused by changes in assembly status, a fusion method based on laser scanning and sensor detection was devised to achieve deformation prediction of the assembly structure during the assembly process. Thirdly, based on the assembly parameter solution model and point cloud prediction model, a constraint-based assembly parameter optimisation model was established, and an improved quantum particle swarm optimisation (LQPSO) algorithm was employed to achieve assembly parameter updates oriented toward changes in assembly status. Finally, an experimental system for array-based thermal protection structure simulation was established to validate the proposed method. The results show that the proposed parameter update method can achieve ideal results for different assembly state simulation components.
doi_str_mv 10.3389/fphy.2024.1453917
format article
fullrecord <record><control><sourceid>doaj_cross</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12c7ad99e8a4408c8c1f0f8a09ab2800</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12c7ad99e8a4408c8c1f0f8a09ab2800</doaj_id><sourcerecordid>oai_doaj_org_article_12c7ad99e8a4408c8c1f0f8a09ab2800</sourcerecordid><originalsourceid>FETCH-LOGICAL-c236t-40f73172d1b9e0cfe26b02d5c0c674626c67be94225ff5a8fb9f7a156696b36f3</originalsourceid><addsrcrecordid>eNpNkM1qAjEUhUNpoWJ9gO7yAmOTm0xm0l2R_ghCNxW6CzeZZBxRMyTThW_fsUpxdQ6Hw7f4CHnkbC5ErZ9CvznOgYGcc1kKzasbMgHQqpAgv2-v-j2Z5bxljHEodQ1yQtp13-DQHVqKOfu93R1pjwn3fvAp0xATzT067xKG4eqSovM50zzg4Knb4KH1-ZlazL6h8UBHJNLwk7uxj6hNbB7IXcBd9rNLTsn67fVr8VGsPt-Xi5dV4UCooZAsVIJX0HCrPXPBg7IMmtIxpyqpQI1hvZYAZQgl1sHqUCEvldLKChXElCzP3Cbi1vSp22M6moid-Rtiag2moXM7bzi4ChutfY1SstrVjgcWamQaLdSMjSx-ZrkUc04-_PM4Myfx5iTenMSbi3jxCy9ieM8</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype></control><display><type>article</type><title>Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method</title><source>ROAD: Directory of Open Access Scholarly Resources</source><creator>Liu, Yue ; Li, Lijuan ; Lin, Xuezhu ; Guo, Lili ; Sun, Jing ; Wang, Hao</creator><creatorcontrib>Liu, Yue ; Li, Lijuan ; Lin, Xuezhu ; Guo, Lili ; Sun, Jing ; Wang, Hao</creatorcontrib><description>Thermal protection systems (TPSs) are important components of reusable spacecraft, and their assembly quality has a crucial impact on flight safety. Owing to the complex assembly process and variable states of spacecraft thermal protection systems, assembly parameters may vary under different assembly states. Therefore, to obtain assembly parameters accurately and efficiently under different assembly states, in this study, 3D point cloud data and fiber optic sensor data were fused to develop an assembly parameter update method for assembly process state changes. Firstly, based on the measured data of thermal protection components and load-bearing structure, the gap, flush and matching parameters solution model are proposed. Secondly, to address the deformation problem of the load-bearing structure caused by changes in assembly status, a fusion method based on laser scanning and sensor detection was devised to achieve deformation prediction of the assembly structure during the assembly process. Thirdly, based on the assembly parameter solution model and point cloud prediction model, a constraint-based assembly parameter optimisation model was established, and an improved quantum particle swarm optimisation (LQPSO) algorithm was employed to achieve assembly parameter updates oriented toward changes in assembly status. Finally, an experimental system for array-based thermal protection structure simulation was established to validate the proposed method. The results show that the proposed parameter update method can achieve ideal results for different assembly state simulation components.</description><identifier>ISSN: 2296-424X</identifier><identifier>EISSN: 2296-424X</identifier><identifier>DOI: 10.3389/fphy.2024.1453917</identifier><language>eng</language><publisher>Frontiers Media S.A</publisher><subject>3D point cloud data ; assembly parameters ; data fusion ; fiber optic sensor data ; state change ; thermal protection system</subject><ispartof>Frontiers in physics, 2024-10, Vol.12</ispartof><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c236t-40f73172d1b9e0cfe26b02d5c0c674626c67be94225ff5a8fb9f7a156696b36f3</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,27901,27902</link.rule.ids></links><search><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Li, Lijuan</creatorcontrib><creatorcontrib>Lin, Xuezhu</creatorcontrib><creatorcontrib>Guo, Lili</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><title>Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method</title><title>Frontiers in physics</title><description>Thermal protection systems (TPSs) are important components of reusable spacecraft, and their assembly quality has a crucial impact on flight safety. Owing to the complex assembly process and variable states of spacecraft thermal protection systems, assembly parameters may vary under different assembly states. Therefore, to obtain assembly parameters accurately and efficiently under different assembly states, in this study, 3D point cloud data and fiber optic sensor data were fused to develop an assembly parameter update method for assembly process state changes. Firstly, based on the measured data of thermal protection components and load-bearing structure, the gap, flush and matching parameters solution model are proposed. Secondly, to address the deformation problem of the load-bearing structure caused by changes in assembly status, a fusion method based on laser scanning and sensor detection was devised to achieve deformation prediction of the assembly structure during the assembly process. Thirdly, based on the assembly parameter solution model and point cloud prediction model, a constraint-based assembly parameter optimisation model was established, and an improved quantum particle swarm optimisation (LQPSO) algorithm was employed to achieve assembly parameter updates oriented toward changes in assembly status. Finally, an experimental system for array-based thermal protection structure simulation was established to validate the proposed method. The results show that the proposed parameter update method can achieve ideal results for different assembly state simulation components.</description><subject>3D point cloud data</subject><subject>assembly parameters</subject><subject>data fusion</subject><subject>fiber optic sensor data</subject><subject>state change</subject><subject>thermal protection system</subject><issn>2296-424X</issn><issn>2296-424X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNpNkM1qAjEUhUNpoWJ9gO7yAmOTm0xm0l2R_ghCNxW6CzeZZBxRMyTThW_fsUpxdQ6Hw7f4CHnkbC5ErZ9CvznOgYGcc1kKzasbMgHQqpAgv2-v-j2Z5bxljHEodQ1yQtp13-DQHVqKOfu93R1pjwn3fvAp0xATzT067xKG4eqSovM50zzg4Knb4KH1-ZlazL6h8UBHJNLwk7uxj6hNbB7IXcBd9rNLTsn67fVr8VGsPt-Xi5dV4UCooZAsVIJX0HCrPXPBg7IMmtIxpyqpQI1hvZYAZQgl1sHqUCEvldLKChXElCzP3Cbi1vSp22M6moid-Rtiag2moXM7bzi4ChutfY1SstrVjgcWamQaLdSMjSx-ZrkUc04-_PM4Myfx5iTenMSbi3jxCy9ieM8</recordid><startdate>20241016</startdate><enddate>20241016</enddate><creator>Liu, Yue</creator><creator>Li, Lijuan</creator><creator>Lin, Xuezhu</creator><creator>Guo, Lili</creator><creator>Sun, Jing</creator><creator>Wang, Hao</creator><general>Frontiers Media S.A</general><scope>AAYXX</scope><scope>CITATION</scope><scope>DOA</scope></search><sort><creationdate>20241016</creationdate><title>Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method</title><author>Liu, Yue ; Li, Lijuan ; Lin, Xuezhu ; Guo, Lili ; Sun, Jing ; Wang, Hao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c236t-40f73172d1b9e0cfe26b02d5c0c674626c67be94225ff5a8fb9f7a156696b36f3</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>3D point cloud data</topic><topic>assembly parameters</topic><topic>data fusion</topic><topic>fiber optic sensor data</topic><topic>state change</topic><topic>thermal protection system</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Liu, Yue</creatorcontrib><creatorcontrib>Li, Lijuan</creatorcontrib><creatorcontrib>Lin, Xuezhu</creatorcontrib><creatorcontrib>Guo, Lili</creatorcontrib><creatorcontrib>Sun, Jing</creatorcontrib><creatorcontrib>Wang, Hao</creatorcontrib><collection>CrossRef</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Frontiers in physics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Liu, Yue</au><au>Li, Lijuan</au><au>Lin, Xuezhu</au><au>Guo, Lili</au><au>Sun, Jing</au><au>Wang, Hao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method</atitle><jtitle>Frontiers in physics</jtitle><date>2024-10-16</date><risdate>2024</risdate><volume>12</volume><issn>2296-424X</issn><eissn>2296-424X</eissn><abstract>Thermal protection systems (TPSs) are important components of reusable spacecraft, and their assembly quality has a crucial impact on flight safety. Owing to the complex assembly process and variable states of spacecraft thermal protection systems, assembly parameters may vary under different assembly states. Therefore, to obtain assembly parameters accurately and efficiently under different assembly states, in this study, 3D point cloud data and fiber optic sensor data were fused to develop an assembly parameter update method for assembly process state changes. Firstly, based on the measured data of thermal protection components and load-bearing structure, the gap, flush and matching parameters solution model are proposed. Secondly, to address the deformation problem of the load-bearing structure caused by changes in assembly status, a fusion method based on laser scanning and sensor detection was devised to achieve deformation prediction of the assembly structure during the assembly process. Thirdly, based on the assembly parameter solution model and point cloud prediction model, a constraint-based assembly parameter optimisation model was established, and an improved quantum particle swarm optimisation (LQPSO) algorithm was employed to achieve assembly parameter updates oriented toward changes in assembly status. Finally, an experimental system for array-based thermal protection structure simulation was established to validate the proposed method. The results show that the proposed parameter update method can achieve ideal results for different assembly state simulation components.</abstract><pub>Frontiers Media S.A</pub><doi>10.3389/fphy.2024.1453917</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2296-424X
ispartof Frontiers in physics, 2024-10, Vol.12
issn 2296-424X
2296-424X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_12c7ad99e8a4408c8c1f0f8a09ab2800
source ROAD: Directory of Open Access Scholarly Resources
subjects 3D point cloud data
assembly parameters
data fusion
fiber optic sensor data
state change
thermal protection system
title Updating assembly parameters for spacecraft assembly process state changes: based on data fusion method
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-31T23%3A07%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-doaj_cross&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Updating%20assembly%20parameters%20for%20spacecraft%20assembly%20process%20state%20changes:%20based%20on%20data%20fusion%20method&rft.jtitle=Frontiers%20in%20physics&rft.au=Liu,%20Yue&rft.date=2024-10-16&rft.volume=12&rft.issn=2296-424X&rft.eissn=2296-424X&rft_id=info:doi/10.3389/fphy.2024.1453917&rft_dat=%3Cdoaj_cross%3Eoai_doaj_org_article_12c7ad99e8a4408c8c1f0f8a09ab2800%3C/doaj_cross%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c236t-40f73172d1b9e0cfe26b02d5c0c674626c67be94225ff5a8fb9f7a156696b36f3%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_id=info:pmid/&rfr_iscdi=true