Loading…
Terrestrial Ecosystem Impacts of Sulfide Mining: Scope of Issues for the Boundary Waters Canoe Area Wilderness, Minnesota, USA
Large-scale metal mining operations are planned or underway in many locations across the boreal forest biome in North America, Europe, and Asia. Although many published analyses of mining impacts on water quality in boreal landscapes are available, there is little guidance regarding terrestrial impa...
Saved in:
Published in: | Forests 2019-09, Vol.10 (9), p.747 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Large-scale metal mining operations are planned or underway in many locations across the boreal forest biome in North America, Europe, and Asia. Although many published analyses of mining impacts on water quality in boreal landscapes are available, there is little guidance regarding terrestrial impacts. Scoping of potential impacts of Cu-Ni exploration and mining in sulfide ores are presented for the Boundary Waters Canoe Area Wilderness (BWCAW), Minnesota USA, an area of mostly boreal forest on thin soils and granitic bedrock. Although the primary footprint of the proposed mines would be outside the BWCAW, displacement and fragmentation of forest ecosystems would cause spatial propagation of effects into a secondary footprint within the wilderness. Potential negative impacts include disruption of population dynamics for wildlife species with migration routes, or metapopulations of plant species that span the wilderness boundary, and establishment of invasive species outside the wilderness that could invade the wilderness. Due to linkages between aquatic and terrestrial ecosystems, acid mine drainage can impact lowland forests, which are highly dependent on chemistry of water flowing through them. The expected extremes in precipitation and temperature due to warming climate can also interact with mining impacts to reduce the resilience of forests to disturbance caused by mining. |
---|---|
ISSN: | 1999-4907 1999-4907 |
DOI: | 10.3390/f10090747 |