Loading…
Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. B...
Saved in:
Published in: | Advances in difference equations 2018-04, Vol.2018 (1), p.1-17, Article 141 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563 |
---|---|
cites | cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563 |
container_end_page | 17 |
container_issue | 1 |
container_start_page | 1 |
container_title | Advances in difference equations |
container_volume | 2018 |
creator | Li, Junze Liu, Yebei Wei, Zhouchao |
description | Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem. |
doi_str_mv | 10.1186/s13662-018-1597-8 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12d105235d4549328c6629cc003211b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12d105235d4549328c6629cc003211b3</doaj_id><sourcerecordid>2031667506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsP4G3BczSTbLLJUUq1hYIXvXgJ2WzSbmk3Ndk99OZr-Ho-iVtXVBBPMwz_j-GH0CWQawApbhIwISgmIDFwVWB5hEYgZIFB5sXxr_0UnaW0JoSqXMoRmj67GPAs7HxW1r6L1rR1aDLTVNmfow8xS9sQ2lU2WXXm_fUtZWmfWrc9RyfebJK7-Jpj9HQ3fZzM8OLhfj65XWCbU95iKApjc8-EI94TIR1VEpilQpW8LCTYEnIlmbSGVJ5UTpFc0dJVpTTSWS7YGM2H3CqYtd7FemviXgdT689DiEttYlvbjdNAKyCcMl7lPFeMStvzUdYSwihAyfqsqyFrF8NL51Kr16GLTf--poSBEAUnh0YYVDaGlKLz361A9IG8Hsjrnrw-kNey99DBk3pts3TxJ_l_0wcr_4Un</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031667506</pqid></control><display><type>article</type><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</creator><creatorcontrib>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</creatorcontrib><description>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1597-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bifurcation theory ; Chua’s circuit system ; Circuits ; Classical Hopf bifurcation ; Difference and Functional Equations ; Economic models ; Electronic circuits ; Functional Analysis ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Periodic solution ; Thermal energy ; Zero-Hopf bifurcation</subject><ispartof>Advances in difference equations, 2018-04, Vol.2018 (1), p.1-17, Article 141</ispartof><rights>The Author(s) 2018</rights><rights>Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</citedby><cites>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2031667506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2031667506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Liu, Yebei</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</description><subject>Analysis</subject><subject>Bifurcation theory</subject><subject>Chua’s circuit system</subject><subject>Circuits</subject><subject>Classical Hopf bifurcation</subject><subject>Difference and Functional Equations</subject><subject>Economic models</subject><subject>Electronic circuits</subject><subject>Functional Analysis</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Periodic solution</subject><subject>Thermal energy</subject><subject>Zero-Hopf bifurcation</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kM1KAzEQx4MoWKsP4G3BczSTbLLJUUq1hYIXvXgJ2WzSbmk3Ndk99OZr-Ho-iVtXVBBPMwz_j-GH0CWQawApbhIwISgmIDFwVWB5hEYgZIFB5sXxr_0UnaW0JoSqXMoRmj67GPAs7HxW1r6L1rR1aDLTVNmfow8xS9sQ2lU2WXXm_fUtZWmfWrc9RyfebJK7-Jpj9HQ3fZzM8OLhfj65XWCbU95iKApjc8-EI94TIR1VEpilQpW8LCTYEnIlmbSGVJ5UTpFc0dJVpTTSWS7YGM2H3CqYtd7FemviXgdT689DiEttYlvbjdNAKyCcMl7lPFeMStvzUdYSwihAyfqsqyFrF8NL51Kr16GLTf--poSBEAUnh0YYVDaGlKLz361A9IG8Hsjrnrw-kNey99DBk3pts3TxJ_l_0wcr_4Un</recordid><startdate>20180419</startdate><enddate>20180419</enddate><creator>Li, Junze</creator><creator>Liu, Yebei</creator><creator>Wei, Zhouchao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20180419</creationdate><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><author>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bifurcation theory</topic><topic>Chua’s circuit system</topic><topic>Circuits</topic><topic>Classical Hopf bifurcation</topic><topic>Difference and Functional Equations</topic><topic>Economic models</topic><topic>Electronic circuits</topic><topic>Functional Analysis</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Periodic solution</topic><topic>Thermal energy</topic><topic>Zero-Hopf bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Liu, Yebei</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies & Aerospace Database</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junze</au><au>Liu, Yebei</au><au>Wei, Zhouchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-04-19</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>141</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1597-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1687-1847 |
ispartof | Advances in difference equations, 2018-04, Vol.2018 (1), p.1-17, Article 141 |
issn | 1687-1847 1687-1839 1687-1847 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_12d105235d4549328c6629cc003211b3 |
source | Publicly Available Content Database; DOAJ Directory of Open Access Journals |
subjects | Analysis Bifurcation theory Chua’s circuit system Circuits Classical Hopf bifurcation Difference and Functional Equations Economic models Electronic circuits Functional Analysis Hopf bifurcation Mathematics Mathematics and Statistics Ordinary Differential Equations Partial Differential Equations Periodic solution Thermal energy Zero-Hopf bifurcation |
title | Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Hopf%20bifurcation%20and%20Hopf%20bifurcation%20for%20smooth%20Chua%E2%80%99s%20system&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Li,%20Junze&rft.date=2018-04-19&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=141&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1597-8&rft_dat=%3Cproquest_doaj_%3E2031667506%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2031667506&rft_id=info:pmid/&rfr_iscdi=true |