Loading…

Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system

Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. B...

Full description

Saved in:
Bibliographic Details
Published in:Advances in difference equations 2018-04, Vol.2018 (1), p.1-17, Article 141
Main Authors: Li, Junze, Liu, Yebei, Wei, Zhouchao
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563
cites cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563
container_end_page 17
container_issue 1
container_start_page 1
container_title Advances in difference equations
container_volume 2018
creator Li, Junze
Liu, Yebei
Wei, Zhouchao
description Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.
doi_str_mv 10.1186/s13662-018-1597-8
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12d105235d4549328c6629cc003211b3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12d105235d4549328c6629cc003211b3</doaj_id><sourcerecordid>2031667506</sourcerecordid><originalsourceid>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</originalsourceid><addsrcrecordid>eNp1kM1KAzEQx4MoWKsP4G3BczSTbLLJUUq1hYIXvXgJ2WzSbmk3Ndk99OZr-Ho-iVtXVBBPMwz_j-GH0CWQawApbhIwISgmIDFwVWB5hEYgZIFB5sXxr_0UnaW0JoSqXMoRmj67GPAs7HxW1r6L1rR1aDLTVNmfow8xS9sQ2lU2WXXm_fUtZWmfWrc9RyfebJK7-Jpj9HQ3fZzM8OLhfj65XWCbU95iKApjc8-EI94TIR1VEpilQpW8LCTYEnIlmbSGVJ5UTpFc0dJVpTTSWS7YGM2H3CqYtd7FemviXgdT689DiEttYlvbjdNAKyCcMl7lPFeMStvzUdYSwihAyfqsqyFrF8NL51Kr16GLTf--poSBEAUnh0YYVDaGlKLz361A9IG8Hsjrnrw-kNey99DBk3pts3TxJ_l_0wcr_4Un</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2031667506</pqid></control><display><type>article</type><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><source>Publicly Available Content Database</source><source>DOAJ Directory of Open Access Journals</source><creator>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</creator><creatorcontrib>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</creatorcontrib><description>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</description><identifier>ISSN: 1687-1847</identifier><identifier>ISSN: 1687-1839</identifier><identifier>EISSN: 1687-1847</identifier><identifier>DOI: 10.1186/s13662-018-1597-8</identifier><language>eng</language><publisher>Cham: Springer International Publishing</publisher><subject>Analysis ; Bifurcation theory ; Chua’s circuit system ; Circuits ; Classical Hopf bifurcation ; Difference and Functional Equations ; Economic models ; Electronic circuits ; Functional Analysis ; Hopf bifurcation ; Mathematics ; Mathematics and Statistics ; Ordinary Differential Equations ; Partial Differential Equations ; Periodic solution ; Thermal energy ; Zero-Hopf bifurcation</subject><ispartof>Advances in difference equations, 2018-04, Vol.2018 (1), p.1-17, Article 141</ispartof><rights>The Author(s) 2018</rights><rights>Advances in Difference Equations is a copyright of Springer, (2018). All Rights Reserved.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</citedby><cites>FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2031667506/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2031667506?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,864,2102,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Liu, Yebei</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><title>Advances in difference equations</title><addtitle>Adv Differ Equ</addtitle><description>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</description><subject>Analysis</subject><subject>Bifurcation theory</subject><subject>Chua’s circuit system</subject><subject>Circuits</subject><subject>Classical Hopf bifurcation</subject><subject>Difference and Functional Equations</subject><subject>Economic models</subject><subject>Electronic circuits</subject><subject>Functional Analysis</subject><subject>Hopf bifurcation</subject><subject>Mathematics</subject><subject>Mathematics and Statistics</subject><subject>Ordinary Differential Equations</subject><subject>Partial Differential Equations</subject><subject>Periodic solution</subject><subject>Thermal energy</subject><subject>Zero-Hopf bifurcation</subject><issn>1687-1847</issn><issn>1687-1839</issn><issn>1687-1847</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp1kM1KAzEQx4MoWKsP4G3BczSTbLLJUUq1hYIXvXgJ2WzSbmk3Ndk99OZr-Ho-iVtXVBBPMwz_j-GH0CWQawApbhIwISgmIDFwVWB5hEYgZIFB5sXxr_0UnaW0JoSqXMoRmj67GPAs7HxW1r6L1rR1aDLTVNmfow8xS9sQ2lU2WXXm_fUtZWmfWrc9RyfebJK7-Jpj9HQ3fZzM8OLhfj65XWCbU95iKApjc8-EI94TIR1VEpilQpW8LCTYEnIlmbSGVJ5UTpFc0dJVpTTSWS7YGM2H3CqYtd7FemviXgdT689DiEttYlvbjdNAKyCcMl7lPFeMStvzUdYSwihAyfqsqyFrF8NL51Kr16GLTf--poSBEAUnh0YYVDaGlKLz361A9IG8Hsjrnrw-kNey99DBk3pts3TxJ_l_0wcr_4Un</recordid><startdate>20180419</startdate><enddate>20180419</enddate><creator>Li, Junze</creator><creator>Liu, Yebei</creator><creator>Wei, Zhouchao</creator><general>Springer International Publishing</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7SC</scope><scope>7TB</scope><scope>7XB</scope><scope>8AL</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>KR7</scope><scope>L6V</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M7S</scope><scope>P5Z</scope><scope>P62</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PTHSS</scope><scope>Q9U</scope><scope>DOA</scope></search><sort><creationdate>20180419</creationdate><title>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</title><author>Li, Junze ; Liu, Yebei ; Wei, Zhouchao</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Analysis</topic><topic>Bifurcation theory</topic><topic>Chua’s circuit system</topic><topic>Circuits</topic><topic>Classical Hopf bifurcation</topic><topic>Difference and Functional Equations</topic><topic>Economic models</topic><topic>Electronic circuits</topic><topic>Functional Analysis</topic><topic>Hopf bifurcation</topic><topic>Mathematics</topic><topic>Mathematics and Statistics</topic><topic>Ordinary Differential Equations</topic><topic>Partial Differential Equations</topic><topic>Periodic solution</topic><topic>Thermal energy</topic><topic>Zero-Hopf bifurcation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Li, Junze</creatorcontrib><creatorcontrib>Liu, Yebei</creatorcontrib><creatorcontrib>Wei, Zhouchao</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Computer and Information Systems Abstracts</collection><collection>Mechanical &amp; Transportation Engineering Abstracts</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Computing Database (Alumni Edition)</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>ProQuest Engineering Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>ProQuest Engineering Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Database</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Engineering Collection</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Advances in difference equations</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Li, Junze</au><au>Liu, Yebei</au><au>Wei, Zhouchao</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system</atitle><jtitle>Advances in difference equations</jtitle><stitle>Adv Differ Equ</stitle><date>2018-04-19</date><risdate>2018</risdate><volume>2018</volume><issue>1</issue><spage>1</spage><epage>17</epage><pages>1-17</pages><artnum>141</artnum><issn>1687-1847</issn><issn>1687-1839</issn><eissn>1687-1847</eissn><abstract>Based on the fact that Chua’s system is a classic model system of electronic circuits, we first present modified Chua’s system with a smooth nonlinearity, described by a cubic polynomial in this paper. Then, we explore the distribution of the equilibrium points of the modified Chua circuit system. By using the averaging theory, we consider zero-Hopf bifurcation of the modified Chua system. Moreover, the existence of periodic solutions in the modified Chua system is derived from the classical Hopf bifurcation theorem.</abstract><cop>Cham</cop><pub>Springer International Publishing</pub><doi>10.1186/s13662-018-1597-8</doi><tpages>17</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1687-1847
ispartof Advances in difference equations, 2018-04, Vol.2018 (1), p.1-17, Article 141
issn 1687-1847
1687-1839
1687-1847
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_12d105235d4549328c6629cc003211b3
source Publicly Available Content Database; DOAJ Directory of Open Access Journals
subjects Analysis
Bifurcation theory
Chua’s circuit system
Circuits
Classical Hopf bifurcation
Difference and Functional Equations
Economic models
Electronic circuits
Functional Analysis
Hopf bifurcation
Mathematics
Mathematics and Statistics
Ordinary Differential Equations
Partial Differential Equations
Periodic solution
Thermal energy
Zero-Hopf bifurcation
title Zero-Hopf bifurcation and Hopf bifurcation for smooth Chua’s system
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A46%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Zero-Hopf%20bifurcation%20and%20Hopf%20bifurcation%20for%20smooth%20Chua%E2%80%99s%20system&rft.jtitle=Advances%20in%20difference%20equations&rft.au=Li,%20Junze&rft.date=2018-04-19&rft.volume=2018&rft.issue=1&rft.spage=1&rft.epage=17&rft.pages=1-17&rft.artnum=141&rft.issn=1687-1847&rft.eissn=1687-1847&rft_id=info:doi/10.1186/s13662-018-1597-8&rft_dat=%3Cproquest_doaj_%3E2031667506%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c425t-177ac4f36e0ff068e29813c269b5b781cb149838ca0df0de90492bedb8a8ec563%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2031667506&rft_id=info:pmid/&rfr_iscdi=true