Loading…

The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts

Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficien...

Full description

Saved in:
Bibliographic Details
Published in:Biology open 2018, Vol.7 (11)
Main Authors: Delic, Vedad, Noble, Kenyaria, Zivkovic, Sandra, Phan, Tam-Anh, Reynes, Christian, Zhang, Yumeng, Phillips, Oluwakemi, Claybaker, Charles, Ta, Yen, Dinh, Vinh B, Cruz, Josean, Prolla, Tomas A, Bradshaw, Patrick C
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133
cites cdi_FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133
container_end_page
container_issue 11
container_start_page
container_title Biology open
container_volume 7
creator Delic, Vedad
Noble, Kenyaria
Zivkovic, Sandra
Phan, Tam-Anh
Reynes, Christian
Zhang, Yumeng
Phillips, Oluwakemi
Claybaker, Charles
Ta, Yen
Dinh, Vinh B
Cruz, Josean
Prolla, Tomas A
Bradshaw, Patrick C
description Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.
doi_str_mv 10.1242/bio.033852
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_12f041ef73ae4a4a9200095ac577b7f1</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_12f041ef73ae4a4a9200095ac577b7f1</doaj_id><sourcerecordid>2099436063</sourcerecordid><originalsourceid>FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133</originalsourceid><addsrcrecordid>eNpdkl1rFDEUhgdRbKm98QdIwBsRtuZjkkxuhKV-FYqC1OtwJpN0s0ySNckI661_3NStpW1uTjjn4T0vh7frXhJ8RmhP340-nWHGBk6fdMcU92IlmMJP7_2PutNStrg9gblQ7Hl3xDCRknNy3P252lhknbOmFpQcWl-cr78jiBPKsIOwNz6iFFHwNZlNilP2MCO3RFN9a7ehDyHlCrP_badH2IevaxSWCjXlVrOPbVMY8z5Fb5DzY07jDKWWF90zB3Oxp7f1pPvx6ePV-ZfV5bfPzc7lyrBB0pXqlbUApCdOWCPpiB3hjDLOgBGuOHPKOTeQgRHHuaFge9xzxRTIAQ-EsZPu4qA7JdjqXfYB8l4n8PpfI-VrDbl6M1tNqMM9sU6ypgI9KNrOpzgYLuUoHWla7w9au2UMdjI21gzzA9GHk-g3-jr90oIKOnDeBN7cCuT0c7Gl6uCLsfMM0aalaIqV6pnA4sb360foNi05tlNpKhvBqSSqUW8PlMmplGzdnRmC9U1UdIuKPkSlwa_u279D_weD_QXT17n_</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2760652719</pqid></control><display><type>article</type><title>The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Delic, Vedad ; Noble, Kenyaria ; Zivkovic, Sandra ; Phan, Tam-Anh ; Reynes, Christian ; Zhang, Yumeng ; Phillips, Oluwakemi ; Claybaker, Charles ; Ta, Yen ; Dinh, Vinh B ; Cruz, Josean ; Prolla, Tomas A ; Bradshaw, Patrick C</creator><creatorcontrib>Delic, Vedad ; Noble, Kenyaria ; Zivkovic, Sandra ; Phan, Tam-Anh ; Reynes, Christian ; Zhang, Yumeng ; Phillips, Oluwakemi ; Claybaker, Charles ; Ta, Yen ; Dinh, Vinh B ; Cruz, Josean ; Prolla, Tomas A ; Bradshaw, Patrick C</creatorcontrib><description>Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.</description><identifier>ISSN: 2046-6390</identifier><identifier>EISSN: 2046-6390</identifier><identifier>DOI: 10.1242/bio.033852</identifier><identifier>PMID: 30177551</identifier><language>eng</language><publisher>England: The Company of Biologists Ltd</publisher><subject>Aging ; AMP kinase ; AMP-activated protein kinase ; DNA polymerase ; DNA-directed DNA polymerase ; Electron transport ; Embryo fibroblasts ; Exonuclease ; Fibroblasts ; Kinases ; Mitochondria ; Mitochondrial DNA ; mTOR ; Mutation ; Oxygen consumption ; Phenotypes ; Pyruvate addiction ; Pyruvic acid ; Rapamycin ; Reactive oxygen species ; Respiration ; Signaling ; Stem cells ; TOR protein</subject><ispartof>Biology open, 2018, Vol.7 (11)</ispartof><rights>2018. Published by The Company of Biologists Ltd.</rights><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2018. Published by The Company of Biologists Ltd 2018</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133</citedby><cites>FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133</cites><orcidid>0000-0001-5445-6394 ; 0000-0002-4591-6798</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC6262855/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2760652719?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,724,777,781,882,4010,25734,27904,27905,27906,36993,36994,44571,53772,53774</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/30177551$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Delic, Vedad</creatorcontrib><creatorcontrib>Noble, Kenyaria</creatorcontrib><creatorcontrib>Zivkovic, Sandra</creatorcontrib><creatorcontrib>Phan, Tam-Anh</creatorcontrib><creatorcontrib>Reynes, Christian</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Phillips, Oluwakemi</creatorcontrib><creatorcontrib>Claybaker, Charles</creatorcontrib><creatorcontrib>Ta, Yen</creatorcontrib><creatorcontrib>Dinh, Vinh B</creatorcontrib><creatorcontrib>Cruz, Josean</creatorcontrib><creatorcontrib>Prolla, Tomas A</creatorcontrib><creatorcontrib>Bradshaw, Patrick C</creatorcontrib><title>The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts</title><title>Biology open</title><addtitle>Biol Open</addtitle><description>Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.</description><subject>Aging</subject><subject>AMP kinase</subject><subject>AMP-activated protein kinase</subject><subject>DNA polymerase</subject><subject>DNA-directed DNA polymerase</subject><subject>Electron transport</subject><subject>Embryo fibroblasts</subject><subject>Exonuclease</subject><subject>Fibroblasts</subject><subject>Kinases</subject><subject>Mitochondria</subject><subject>Mitochondrial DNA</subject><subject>mTOR</subject><subject>Mutation</subject><subject>Oxygen consumption</subject><subject>Phenotypes</subject><subject>Pyruvate addiction</subject><subject>Pyruvic acid</subject><subject>Rapamycin</subject><subject>Reactive oxygen species</subject><subject>Respiration</subject><subject>Signaling</subject><subject>Stem cells</subject><subject>TOR protein</subject><issn>2046-6390</issn><issn>2046-6390</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkl1rFDEUhgdRbKm98QdIwBsRtuZjkkxuhKV-FYqC1OtwJpN0s0ySNckI661_3NStpW1uTjjn4T0vh7frXhJ8RmhP340-nWHGBk6fdMcU92IlmMJP7_2PutNStrg9gblQ7Hl3xDCRknNy3P252lhknbOmFpQcWl-cr78jiBPKsIOwNz6iFFHwNZlNilP2MCO3RFN9a7ehDyHlCrP_badH2IevaxSWCjXlVrOPbVMY8z5Fb5DzY07jDKWWF90zB3Oxp7f1pPvx6ePV-ZfV5bfPzc7lyrBB0pXqlbUApCdOWCPpiB3hjDLOgBGuOHPKOTeQgRHHuaFge9xzxRTIAQ-EsZPu4qA7JdjqXfYB8l4n8PpfI-VrDbl6M1tNqMM9sU6ypgI9KNrOpzgYLuUoHWla7w9au2UMdjI21gzzA9GHk-g3-jr90oIKOnDeBN7cCuT0c7Gl6uCLsfMM0aalaIqV6pnA4sb360foNi05tlNpKhvBqSSqUW8PlMmplGzdnRmC9U1UdIuKPkSlwa_u279D_weD_QXT17n_</recordid><startdate>2018</startdate><enddate>2018</enddate><creator>Delic, Vedad</creator><creator>Noble, Kenyaria</creator><creator>Zivkovic, Sandra</creator><creator>Phan, Tam-Anh</creator><creator>Reynes, Christian</creator><creator>Zhang, Yumeng</creator><creator>Phillips, Oluwakemi</creator><creator>Claybaker, Charles</creator><creator>Ta, Yen</creator><creator>Dinh, Vinh B</creator><creator>Cruz, Josean</creator><creator>Prolla, Tomas A</creator><creator>Bradshaw, Patrick C</creator><general>The Company of Biologists Ltd</general><general>The Company of Biologists</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>PYCSY</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-5445-6394</orcidid><orcidid>https://orcid.org/0000-0002-4591-6798</orcidid></search><sort><creationdate>2018</creationdate><title>The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts</title><author>Delic, Vedad ; Noble, Kenyaria ; Zivkovic, Sandra ; Phan, Tam-Anh ; Reynes, Christian ; Zhang, Yumeng ; Phillips, Oluwakemi ; Claybaker, Charles ; Ta, Yen ; Dinh, Vinh B ; Cruz, Josean ; Prolla, Tomas A ; Bradshaw, Patrick C</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>Aging</topic><topic>AMP kinase</topic><topic>AMP-activated protein kinase</topic><topic>DNA polymerase</topic><topic>DNA-directed DNA polymerase</topic><topic>Electron transport</topic><topic>Embryo fibroblasts</topic><topic>Exonuclease</topic><topic>Fibroblasts</topic><topic>Kinases</topic><topic>Mitochondria</topic><topic>Mitochondrial DNA</topic><topic>mTOR</topic><topic>Mutation</topic><topic>Oxygen consumption</topic><topic>Phenotypes</topic><topic>Pyruvate addiction</topic><topic>Pyruvic acid</topic><topic>Rapamycin</topic><topic>Reactive oxygen species</topic><topic>Respiration</topic><topic>Signaling</topic><topic>Stem cells</topic><topic>TOR protein</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Delic, Vedad</creatorcontrib><creatorcontrib>Noble, Kenyaria</creatorcontrib><creatorcontrib>Zivkovic, Sandra</creatorcontrib><creatorcontrib>Phan, Tam-Anh</creatorcontrib><creatorcontrib>Reynes, Christian</creatorcontrib><creatorcontrib>Zhang, Yumeng</creatorcontrib><creatorcontrib>Phillips, Oluwakemi</creatorcontrib><creatorcontrib>Claybaker, Charles</creatorcontrib><creatorcontrib>Ta, Yen</creatorcontrib><creatorcontrib>Dinh, Vinh B</creatorcontrib><creatorcontrib>Cruz, Josean</creatorcontrib><creatorcontrib>Prolla, Tomas A</creatorcontrib><creatorcontrib>Bradshaw, Patrick C</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>Biological Sciences</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Environmental Science Collection</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>Directory of Open Access Journals</collection><jtitle>Biology open</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Delic, Vedad</au><au>Noble, Kenyaria</au><au>Zivkovic, Sandra</au><au>Phan, Tam-Anh</au><au>Reynes, Christian</au><au>Zhang, Yumeng</au><au>Phillips, Oluwakemi</au><au>Claybaker, Charles</au><au>Ta, Yen</au><au>Dinh, Vinh B</au><au>Cruz, Josean</au><au>Prolla, Tomas A</au><au>Bradshaw, Patrick C</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts</atitle><jtitle>Biology open</jtitle><addtitle>Biol Open</addtitle><date>2018</date><risdate>2018</risdate><volume>7</volume><issue>11</issue><issn>2046-6390</issn><eissn>2046-6390</eissn><abstract>Mitochondrial DNA mutations accumulate with age and may play a role in stem cell aging as suggested by the premature aging phenotype of mitochondrial DNA polymerase gamma (POLG) exonuclease-deficient mice. Therefore, E1A immortalized murine embryonic fibroblasts (MEFs) from POLG exonuclease-deficient and wild-type (WT) mice were constructed. Surprisingly, when some E1A immortalized MEF lines were cultured in pyruvate-containing media they slowly became addicted to the pyruvate. The POLG exonuclease-deficient MEFs were more sensitive to several mitochondrial inhibitors and showed increased reactive oxygen species (ROS) production under standard conditions. When cultured in pyruvate-containing media, POLG exonuclease-deficient MEFs showed decreased oxygen consumption compared to controls. Increased AMP-activated protein kinase (AMPK) signaling and decreased mammalian target of rapamycin (mTOR) signaling delayed aging and influenced mitochondrial function. Therefore, the effects of 5-aminoimidazole-4-carboxamide ribonucleotide (AICAR), an AMPK activator, or rapamycin, an mTOR inhibitor, on measures of mitochondrial function were determined. Rapamycin treatment transiently increased respiration only in WT MEFs and, under most conditions, increased ATP levels. Short term AICAR treatment transiently increased ROS production and, under most conditions, decreased ATP levels. Chronic AICAR treatment decreased respiration and ROS production in WT MEFs. These results demonstrate the context-dependent effects of AICAR and rapamycin on mitochondrial function.</abstract><cop>England</cop><pub>The Company of Biologists Ltd</pub><pmid>30177551</pmid><doi>10.1242/bio.033852</doi><orcidid>https://orcid.org/0000-0001-5445-6394</orcidid><orcidid>https://orcid.org/0000-0002-4591-6798</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2046-6390
ispartof Biology open, 2018, Vol.7 (11)
issn 2046-6390
2046-6390
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_12f041ef73ae4a4a9200095ac577b7f1
source Publicly Available Content (ProQuest); PubMed Central
subjects Aging
AMP kinase
AMP-activated protein kinase
DNA polymerase
DNA-directed DNA polymerase
Electron transport
Embryo fibroblasts
Exonuclease
Fibroblasts
Kinases
Mitochondria
Mitochondrial DNA
mTOR
Mutation
Oxygen consumption
Phenotypes
Pyruvate addiction
Pyruvic acid
Rapamycin
Reactive oxygen species
Respiration
Signaling
Stem cells
TOR protein
title The effects of AICAR and rapamycin on mitochondrial function in immortalized mitochondrial DNA mutator murine embryonic fibroblasts
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-21T05%3A24%3A55IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20effects%20of%20AICAR%20and%20rapamycin%20on%20mitochondrial%20function%20in%20immortalized%20mitochondrial%20DNA%20mutator%20murine%20embryonic%20fibroblasts&rft.jtitle=Biology%20open&rft.au=Delic,%20Vedad&rft.date=2018&rft.volume=7&rft.issue=11&rft.issn=2046-6390&rft.eissn=2046-6390&rft_id=info:doi/10.1242/bio.033852&rft_dat=%3Cproquest_doaj_%3E2099436063%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c3872-949eeaa141f6ec72b0f1532353a315953f9fff81831f55c2ae4045939a7808133%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2760652719&rft_id=info:pmid/30177551&rfr_iscdi=true