Loading…

A Gait Pattern Generator for Closed-Loop Position Control of a Soft Walking Robot

This paper presents an approach to control the position of a gecko-inspired soft robot in Cartesian space. By formulating constraints under the assumption of constant curvature, the joint space of the robot is reduced in its dimension from nine to two. The remaining two generalized coordinates descr...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in robotics and AI 2020-07, Vol.7, p.87-87
Main Authors: Schiller, Lars, Seibel, Arthur, Schlattmann, Josef
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:This paper presents an approach to control the position of a gecko-inspired soft robot in Cartesian space. By formulating constraints under the assumption of constant curvature, the joint space of the robot is reduced in its dimension from nine to two. The remaining two generalized coordinates describe respectively the walking speed and the rotational speed of the robot and define the so-called velocity space. By means of simulations and experimental validation, the direct kinematics of the entire velocity space (mapping in Cartesian task space) is approximated by a bivariate polynomial. Based on this, an optimization problem is formulated that recursively generates the optimal references to reach a given target position in task space. Finally, we show in simulation and experiment that the robot can master arbitrary obstacle courses by making use of this gait pattern generator.
ISSN:2296-9144
2296-9144
DOI:10.3389/frobt.2020.00087