Loading…
Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium
Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this...
Saved in:
Published in: | Nature communications 2024-01, Vol.15 (1), p.169-169, Article 169 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13 |
---|---|
cites | cdi_FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13 |
container_end_page | 169 |
container_issue | 1 |
container_start_page | 169 |
container_title | Nature communications |
container_volume | 15 |
creator | Valentini, Marco Sagi, Oliver Baghumyan, Levon de Gijsel, Thijs Jung, Jason Calcaterra, Stefano Ballabio, Andrea Aguilera Servin, Juan Aggarwal, Kushagra Janik, Marian Adletzberger, Thomas Seoane Souto, Rubén Leijnse, Martin Danon, Jeroen Schrade, Constantin Bakkers, Erik Chrastina, Daniel Isella, Giovanni Katsaros, Georgios |
description | Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a
sin
2
φ
CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
M. Valentini et al. study superconducting quantum interference devices (SQUIDs) where the weak link of the Josephson junctions is a germanium 2D hole gas. They report signatures of the tunneling of pairs of Cooper pairs. For a particular microwave drive power, they observe a 100% efficient superconducting diode effect. |
doi_str_mv | 10.1038/s41467-023-44114-0 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_131573f81a0d4811bcce68cd01d43d0e</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_131573f81a0d4811bcce68cd01d43d0e</doaj_id><sourcerecordid>2910190371</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13</originalsourceid><addsrcrecordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCdwbO7GzQmgEbaWRYAErFpb_MniU2MFOivr2eJqhdFhgybLle_zZPj5F8RLhLQLh7xJF2rIKalJRikgreFKc10CxQlaTp4_mZ8VlSnvIjXTIKX1enBGOLePIz4vvX2R0812lg0823jq_KzchTDZWk3SxnKP0aQpxLqU3pTNWDmVacjnrzaLng964YGzpfDkN0stY7mwcpXfL-KJ41ssh2cvjeFF8-_Tx6-a62n6-utl82Fa6RZgrNNBpqkExAn3TdIz3CkjfMF5zZFqpjkjDlCRgtSJ1C62xjUajUBtDNJKL4mblmiD3YopulPFOBOnE_UKIOyHj7PRgBRJsGOk5SjCUIyqtbcu1ATSUGLCZtV1Z6ZedFnVCG5Ypd5W7SFa0wPIPaCW0IbWg0KNQpFUCG0uBgVVadhn3fsVl1miNtj47OpxQTyve_RC7cCsQWFsjaTLhzZEQw8_FplmMLmk7ZK9tWJKoOwTsgLCDD6__ke7DEn22PquAdxyats6qelXpGFKKtn-4DYI4REus0RI5WuI-WgLypleP3_Gw5U-QsoAcfcslnyPw9-z_YH8Dp0PaSA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2908980562</pqid></control><display><type>article</type><title>Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium</title><source>Open Access: PubMed Central</source><source>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</source><source>Nature</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><creator>Valentini, Marco ; Sagi, Oliver ; Baghumyan, Levon ; de Gijsel, Thijs ; Jung, Jason ; Calcaterra, Stefano ; Ballabio, Andrea ; Aguilera Servin, Juan ; Aggarwal, Kushagra ; Janik, Marian ; Adletzberger, Thomas ; Seoane Souto, Rubén ; Leijnse, Martin ; Danon, Jeroen ; Schrade, Constantin ; Bakkers, Erik ; Chrastina, Daniel ; Isella, Giovanni ; Katsaros, Georgios</creator><creatorcontrib>Valentini, Marco ; Sagi, Oliver ; Baghumyan, Levon ; de Gijsel, Thijs ; Jung, Jason ; Calcaterra, Stefano ; Ballabio, Andrea ; Aguilera Servin, Juan ; Aggarwal, Kushagra ; Janik, Marian ; Adletzberger, Thomas ; Seoane Souto, Rubén ; Leijnse, Martin ; Danon, Jeroen ; Schrade, Constantin ; Bakkers, Erik ; Chrastina, Daniel ; Isella, Giovanni ; Katsaros, Georgios</creatorcontrib><description>Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a
sin
2
φ
CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
M. Valentini et al. study superconducting quantum interference devices (SQUIDs) where the weak link of the Josephson junctions is a germanium 2D hole gas. They report signatures of the tunneling of pairs of Cooper pairs. For a particular microwave drive power, they observe a 100% efficient superconducting diode effect.</description><identifier>ISSN: 2041-1723</identifier><identifier>EISSN: 2041-1723</identifier><identifier>DOI: 10.1038/s41467-023-44114-0</identifier><identifier>PMID: 38167818</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>639/766/119/1003 ; 639/925/927/1064 ; Aluminum ; Condensed Matter Physics ; Cooper pairs ; Den kondenserade materiens fysik ; Electrical junctions ; Electrons ; Fysik ; Germanium ; Humanities and Social Sciences ; Interference ; Josephson junctions ; multidisciplinary ; Natural Sciences ; Naturvetenskap ; Physical Sciences ; Quantum wells ; Qubits (quantum computing) ; Science ; Science (multidisciplinary) ; Superconducting quantum interference devices ; Superconductivity</subject><ispartof>Nature communications, 2024-01, Vol.15 (1), p.169-169, Article 169</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13</citedby><cites>FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13</cites><orcidid>0000-0002-2978-3534 ; 0009-0008-6608-002X ; 0000-0002-2862-8372 ; 0000-0001-9985-9293 ; 0000-0002-8264-6862 ; 0000-0002-1054-3717 ; 0000-0001-8342-202X</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2908980562/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2908980562?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38167818$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://lup.lub.lu.se/record/607146cb-cd32-40f1-b36b-15e4070ebca9$$DView record from Swedish Publication Index$$Hfree_for_read</backlink></links><search><creatorcontrib>Valentini, Marco</creatorcontrib><creatorcontrib>Sagi, Oliver</creatorcontrib><creatorcontrib>Baghumyan, Levon</creatorcontrib><creatorcontrib>de Gijsel, Thijs</creatorcontrib><creatorcontrib>Jung, Jason</creatorcontrib><creatorcontrib>Calcaterra, Stefano</creatorcontrib><creatorcontrib>Ballabio, Andrea</creatorcontrib><creatorcontrib>Aguilera Servin, Juan</creatorcontrib><creatorcontrib>Aggarwal, Kushagra</creatorcontrib><creatorcontrib>Janik, Marian</creatorcontrib><creatorcontrib>Adletzberger, Thomas</creatorcontrib><creatorcontrib>Seoane Souto, Rubén</creatorcontrib><creatorcontrib>Leijnse, Martin</creatorcontrib><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Schrade, Constantin</creatorcontrib><creatorcontrib>Bakkers, Erik</creatorcontrib><creatorcontrib>Chrastina, Daniel</creatorcontrib><creatorcontrib>Isella, Giovanni</creatorcontrib><creatorcontrib>Katsaros, Georgios</creatorcontrib><title>Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium</title><title>Nature communications</title><addtitle>Nat Commun</addtitle><addtitle>Nat Commun</addtitle><description>Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a
sin
2
φ
CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
M. Valentini et al. study superconducting quantum interference devices (SQUIDs) where the weak link of the Josephson junctions is a germanium 2D hole gas. They report signatures of the tunneling of pairs of Cooper pairs. For a particular microwave drive power, they observe a 100% efficient superconducting diode effect.</description><subject>639/766/119/1003</subject><subject>639/925/927/1064</subject><subject>Aluminum</subject><subject>Condensed Matter Physics</subject><subject>Cooper pairs</subject><subject>Den kondenserade materiens fysik</subject><subject>Electrical junctions</subject><subject>Electrons</subject><subject>Fysik</subject><subject>Germanium</subject><subject>Humanities and Social Sciences</subject><subject>Interference</subject><subject>Josephson junctions</subject><subject>multidisciplinary</subject><subject>Natural Sciences</subject><subject>Naturvetenskap</subject><subject>Physical Sciences</subject><subject>Quantum wells</subject><subject>Qubits (quantum computing)</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Superconducting quantum interference devices</subject><subject>Superconductivity</subject><issn>2041-1723</issn><issn>2041-1723</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9ks1u1DAUhSMEolXpC7BAkdiwCdwbO7GzQmgEbaWRYAErFpb_MniU2MFOivr2eJqhdFhgybLle_zZPj5F8RLhLQLh7xJF2rIKalJRikgreFKc10CxQlaTp4_mZ8VlSnvIjXTIKX1enBGOLePIz4vvX2R0812lg0823jq_KzchTDZWk3SxnKP0aQpxLqU3pTNWDmVacjnrzaLng964YGzpfDkN0stY7mwcpXfL-KJ41ssh2cvjeFF8-_Tx6-a62n6-utl82Fa6RZgrNNBpqkExAn3TdIz3CkjfMF5zZFqpjkjDlCRgtSJ1C62xjUajUBtDNJKL4mblmiD3YopulPFOBOnE_UKIOyHj7PRgBRJsGOk5SjCUIyqtbcu1ATSUGLCZtV1Z6ZedFnVCG5Ypd5W7SFa0wPIPaCW0IbWg0KNQpFUCG0uBgVVadhn3fsVl1miNtj47OpxQTyve_RC7cCsQWFsjaTLhzZEQw8_FplmMLmk7ZK9tWJKoOwTsgLCDD6__ke7DEn22PquAdxyats6qelXpGFKKtn-4DYI4REus0RI5WuI-WgLypleP3_Gw5U-QsoAcfcslnyPw9-z_YH8Dp0PaSA</recordid><startdate>20240102</startdate><enddate>20240102</enddate><creator>Valentini, Marco</creator><creator>Sagi, Oliver</creator><creator>Baghumyan, Levon</creator><creator>de Gijsel, Thijs</creator><creator>Jung, Jason</creator><creator>Calcaterra, Stefano</creator><creator>Ballabio, Andrea</creator><creator>Aguilera Servin, Juan</creator><creator>Aggarwal, Kushagra</creator><creator>Janik, Marian</creator><creator>Adletzberger, Thomas</creator><creator>Seoane Souto, Rubén</creator><creator>Leijnse, Martin</creator><creator>Danon, Jeroen</creator><creator>Schrade, Constantin</creator><creator>Bakkers, Erik</creator><creator>Chrastina, Daniel</creator><creator>Isella, Giovanni</creator><creator>Katsaros, Georgios</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7QL</scope><scope>7QP</scope><scope>7QR</scope><scope>7SN</scope><scope>7SS</scope><scope>7ST</scope><scope>7T5</scope><scope>7T7</scope><scope>7TM</scope><scope>7TO</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>C1K</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>H94</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>RC3</scope><scope>SOI</scope><scope>7X8</scope><scope>5PM</scope><scope>ADTPV</scope><scope>AGCHP</scope><scope>AOWAS</scope><scope>D8T</scope><scope>D95</scope><scope>ZZAVC</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2978-3534</orcidid><orcidid>https://orcid.org/0009-0008-6608-002X</orcidid><orcidid>https://orcid.org/0000-0002-2862-8372</orcidid><orcidid>https://orcid.org/0000-0001-9985-9293</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0002-1054-3717</orcidid><orcidid>https://orcid.org/0000-0001-8342-202X</orcidid></search><sort><creationdate>20240102</creationdate><title>Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium</title><author>Valentini, Marco ; Sagi, Oliver ; Baghumyan, Levon ; de Gijsel, Thijs ; Jung, Jason ; Calcaterra, Stefano ; Ballabio, Andrea ; Aguilera Servin, Juan ; Aggarwal, Kushagra ; Janik, Marian ; Adletzberger, Thomas ; Seoane Souto, Rubén ; Leijnse, Martin ; Danon, Jeroen ; Schrade, Constantin ; Bakkers, Erik ; Chrastina, Daniel ; Isella, Giovanni ; Katsaros, Georgios</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>639/766/119/1003</topic><topic>639/925/927/1064</topic><topic>Aluminum</topic><topic>Condensed Matter Physics</topic><topic>Cooper pairs</topic><topic>Den kondenserade materiens fysik</topic><topic>Electrical junctions</topic><topic>Electrons</topic><topic>Fysik</topic><topic>Germanium</topic><topic>Humanities and Social Sciences</topic><topic>Interference</topic><topic>Josephson junctions</topic><topic>multidisciplinary</topic><topic>Natural Sciences</topic><topic>Naturvetenskap</topic><topic>Physical Sciences</topic><topic>Quantum wells</topic><topic>Qubits (quantum computing)</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Superconducting quantum interference devices</topic><topic>Superconductivity</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Valentini, Marco</creatorcontrib><creatorcontrib>Sagi, Oliver</creatorcontrib><creatorcontrib>Baghumyan, Levon</creatorcontrib><creatorcontrib>de Gijsel, Thijs</creatorcontrib><creatorcontrib>Jung, Jason</creatorcontrib><creatorcontrib>Calcaterra, Stefano</creatorcontrib><creatorcontrib>Ballabio, Andrea</creatorcontrib><creatorcontrib>Aguilera Servin, Juan</creatorcontrib><creatorcontrib>Aggarwal, Kushagra</creatorcontrib><creatorcontrib>Janik, Marian</creatorcontrib><creatorcontrib>Adletzberger, Thomas</creatorcontrib><creatorcontrib>Seoane Souto, Rubén</creatorcontrib><creatorcontrib>Leijnse, Martin</creatorcontrib><creatorcontrib>Danon, Jeroen</creatorcontrib><creatorcontrib>Schrade, Constantin</creatorcontrib><creatorcontrib>Bakkers, Erik</creatorcontrib><creatorcontrib>Chrastina, Daniel</creatorcontrib><creatorcontrib>Isella, Giovanni</creatorcontrib><creatorcontrib>Katsaros, Georgios</creatorcontrib><collection>SpringerOpen</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Bacteriology Abstracts (Microbiology B)</collection><collection>Calcium & Calcified Tissue Abstracts</collection><collection>Chemoreception Abstracts</collection><collection>Ecology Abstracts</collection><collection>Entomology Abstracts (Full archive)</collection><collection>Environment Abstracts</collection><collection>Immunology Abstracts</collection><collection>Industrial and Applied Microbiology Abstracts (Microbiology A)</collection><collection>Nucleic Acids Abstracts</collection><collection>Oncogenes and Growth Factors Abstracts</collection><collection>ProQuest - Health & Medical Complete保健、医学与药学数据库</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Environmental Sciences and Pollution Management</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>AIDS and Cancer Research Abstracts</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Genetics Abstracts</collection><collection>Environment Abstracts</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>SwePub</collection><collection>SWEPUB Lunds universitet full text</collection><collection>SwePub Articles</collection><collection>SWEPUB Freely available online</collection><collection>SWEPUB Lunds universitet</collection><collection>SwePub Articles full text</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nature communications</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Valentini, Marco</au><au>Sagi, Oliver</au><au>Baghumyan, Levon</au><au>de Gijsel, Thijs</au><au>Jung, Jason</au><au>Calcaterra, Stefano</au><au>Ballabio, Andrea</au><au>Aguilera Servin, Juan</au><au>Aggarwal, Kushagra</au><au>Janik, Marian</au><au>Adletzberger, Thomas</au><au>Seoane Souto, Rubén</au><au>Leijnse, Martin</au><au>Danon, Jeroen</au><au>Schrade, Constantin</au><au>Bakkers, Erik</au><au>Chrastina, Daniel</au><au>Isella, Giovanni</au><au>Katsaros, Georgios</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium</atitle><jtitle>Nature communications</jtitle><stitle>Nat Commun</stitle><addtitle>Nat Commun</addtitle><date>2024-01-02</date><risdate>2024</risdate><volume>15</volume><issue>1</issue><spage>169</spage><epage>169</epage><pages>169-169</pages><artnum>169</artnum><issn>2041-1723</issn><eissn>2041-1723</eissn><abstract>Superconductor/semiconductor hybrid devices have attracted increasing interest in the past years. Superconducting electronics aims to complement semiconductor technology, while hybrid architectures are at the forefront of new ideas such as topological superconductivity and protected qubits. In this work, we engineer the induced superconductivity in two-dimensional germanium hole gas by varying the distance between the quantum well and the aluminum. We demonstrate a hard superconducting gap and realize an electrically and flux tunable superconducting diode using a superconducting quantum interference device (SQUID). This allows to tune the current phase relation (CPR), to a regime where single Cooper pair tunneling is suppressed, creating a
sin
2
φ
CPR. Shapiro experiments complement this interpretation and the microwave drive allows to create a diode with ≈ 100% efficiency. The reported results open up the path towards integration of spin qubit devices, microwave resonators and (protected) superconducting qubits on the same silicon technology compatible platform.
M. Valentini et al. study superconducting quantum interference devices (SQUIDs) where the weak link of the Josephson junctions is a germanium 2D hole gas. They report signatures of the tunneling of pairs of Cooper pairs. For a particular microwave drive power, they observe a 100% efficient superconducting diode effect.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38167818</pmid><doi>10.1038/s41467-023-44114-0</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-2978-3534</orcidid><orcidid>https://orcid.org/0009-0008-6608-002X</orcidid><orcidid>https://orcid.org/0000-0002-2862-8372</orcidid><orcidid>https://orcid.org/0000-0001-9985-9293</orcidid><orcidid>https://orcid.org/0000-0002-8264-6862</orcidid><orcidid>https://orcid.org/0000-0002-1054-3717</orcidid><orcidid>https://orcid.org/0000-0001-8342-202X</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2041-1723 |
ispartof | Nature communications, 2024-01, Vol.15 (1), p.169-169, Article 169 |
issn | 2041-1723 2041-1723 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_131573f81a0d4811bcce68cd01d43d0e |
source | Open Access: PubMed Central; Publicly Available Content Database (Proquest) (PQ_SDU_P3); Nature; Springer Nature - nature.com Journals - Fully Open Access |
subjects | 639/766/119/1003 639/925/927/1064 Aluminum Condensed Matter Physics Cooper pairs Den kondenserade materiens fysik Electrical junctions Electrons Fysik Germanium Humanities and Social Sciences Interference Josephson junctions multidisciplinary Natural Sciences Naturvetenskap Physical Sciences Quantum wells Qubits (quantum computing) Science Science (multidisciplinary) Superconducting quantum interference devices Superconductivity |
title | Parity-conserving Cooper-pair transport and ideal superconducting diode in planar germanium |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-27T15%3A11%3A51IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Parity-conserving%20Cooper-pair%20transport%20and%20ideal%20superconducting%20diode%20in%20planar%20germanium&rft.jtitle=Nature%20communications&rft.au=Valentini,%20Marco&rft.date=2024-01-02&rft.volume=15&rft.issue=1&rft.spage=169&rft.epage=169&rft.pages=169-169&rft.artnum=169&rft.issn=2041-1723&rft.eissn=2041-1723&rft_id=info:doi/10.1038/s41467-023-44114-0&rft_dat=%3Cproquest_doaj_%3E2910190371%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-1d09c4c0b730f55978fb03f5782817cbb93ad7ba30ecb32606de5c1db1cdd3c13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2908980562&rft_id=info:pmid/38167818&rfr_iscdi=true |