Loading…

The Synchronization of N Cascade-Coupled Chaotic Systems

In this paper, we investigate a novel synchronization method, which consists of n n≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stabi...

Full description

Saved in:
Bibliographic Details
Published in:Complexity (New York, N.Y.) N.Y.), 2019, Vol.2019 (2019), p.1-10
Main Authors: Zheng, Yazhao, Li, Shouliang, Du, Juan, Li, Pengyu, Jia, Bowen
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703
cites cdi_FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703
container_end_page 10
container_issue 2019
container_start_page 1
container_title Complexity (New York, N.Y.)
container_volume 2019
creator Zheng, Yazhao
Li, Shouliang
Du, Juan
Li, Pengyu
Jia, Bowen
description In this paper, we investigate a novel synchronization method, which consists of n n≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.
doi_str_mv 10.1155/2019/2709820
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_131fb4ad2dc241f9961264941fe3f8df</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A615313234</galeid><doaj_id>oai_doaj_org_article_131fb4ad2dc241f9961264941fe3f8df</doaj_id><sourcerecordid>A615313234</sourcerecordid><originalsourceid>FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703</originalsourceid><addsrcrecordid>eNqFkc1P3DAQxSNEJT7aW89VJI4Q8NixHR9RVAoSggNwtib-YL3ajbd2VhX96-s0iB57Gmv0mzdv_KrqK5BLAM6vKAF1RSVRHSUH1TEQpRrCqTic31I0VHbyqDrJeU0IUYLJ46p7Xrn66W00qxTH8BunEMc6-vqh7jEbtK7p4363cbbuVxinYAqcJ7fNn6tPHjfZfXmvp9XLzffn_ra5f_xx11_fN6YVfGocsxSUkwPnzDhipHdctUAYwsC49UAEUgrAUGEr6UBJa8mgnDCdxEESdlrdLbo24lrvUthietMRg_7biOlVYyq-Nk4DAz-0aKk1tAWvlAAq2rLNO-Y764vW2aK1S_Hn3uVJr-M-jcW-powq0Qku20JdLtQrFtEw-jglNDh_xjaYODofSv9aAGfAKJsHLpYBk2LOyfkPm0D0HIyeg9HvwRT8fMFXYbT4K_yP_rbQrjDO4z-6nEuFYn8AjqKT1Q</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2329686574</pqid></control><display><type>article</type><title>The Synchronization of N Cascade-Coupled Chaotic Systems</title><source>Wiley Open Access</source><creator>Zheng, Yazhao ; Li, Shouliang ; Du, Juan ; Li, Pengyu ; Jia, Bowen</creator><contributor>Gupta, Mahendra K. ; Mahendra K Gupta</contributor><creatorcontrib>Zheng, Yazhao ; Li, Shouliang ; Du, Juan ; Li, Pengyu ; Jia, Bowen ; Gupta, Mahendra K. ; Mahendra K Gupta</creatorcontrib><description>In this paper, we investigate a novel synchronization method, which consists of n n≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.</description><identifier>ISSN: 1076-2787</identifier><identifier>EISSN: 1099-0526</identifier><identifier>DOI: 10.1155/2019/2709820</identifier><language>eng</language><publisher>Cairo, Egypt: Hindawi Publishing Corporation</publisher><subject>Chaos theory ; Computer simulation ; Coupling ; Dynamical systems ; Signal processing ; Stability criteria ; Synchronism</subject><ispartof>Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-10</ispartof><rights>Copyright © 2019 Pengyu Li et al.</rights><rights>COPYRIGHT 2019 John Wiley &amp; Sons, Inc.</rights><rights>Copyright © 2019 Pengyu Li et al. This is an open access article distributed under the Creative Commons Attribution License (the “License”), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited. Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License. http://creativecommons.org/licenses/by/4.0</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703</citedby><cites>FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703</cites><orcidid>0000-0003-3333-0244 ; 0000-0001-7090-0811 ; 0000-0002-1703-4026</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>314,776,780,4009,27902,27903,27904</link.rule.ids></links><search><contributor>Gupta, Mahendra K.</contributor><contributor>Mahendra K Gupta</contributor><creatorcontrib>Zheng, Yazhao</creatorcontrib><creatorcontrib>Li, Shouliang</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><title>The Synchronization of N Cascade-Coupled Chaotic Systems</title><title>Complexity (New York, N.Y.)</title><description>In this paper, we investigate a novel synchronization method, which consists of n n≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.</description><subject>Chaos theory</subject><subject>Computer simulation</subject><subject>Coupling</subject><subject>Dynamical systems</subject><subject>Signal processing</subject><subject>Stability criteria</subject><subject>Synchronism</subject><issn>1076-2787</issn><issn>1099-0526</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNqFkc1P3DAQxSNEJT7aW89VJI4Q8NixHR9RVAoSggNwtib-YL3ajbd2VhX96-s0iB57Gmv0mzdv_KrqK5BLAM6vKAF1RSVRHSUH1TEQpRrCqTic31I0VHbyqDrJeU0IUYLJ46p7Xrn66W00qxTH8BunEMc6-vqh7jEbtK7p4363cbbuVxinYAqcJ7fNn6tPHjfZfXmvp9XLzffn_ra5f_xx11_fN6YVfGocsxSUkwPnzDhipHdctUAYwsC49UAEUgrAUGEr6UBJa8mgnDCdxEESdlrdLbo24lrvUthietMRg_7biOlVYyq-Nk4DAz-0aKk1tAWvlAAq2rLNO-Y764vW2aK1S_Hn3uVJr-M-jcW-powq0Qku20JdLtQrFtEw-jglNDh_xjaYODofSv9aAGfAKJsHLpYBk2LOyfkPm0D0HIyeg9HvwRT8fMFXYbT4K_yP_rbQrjDO4z-6nEuFYn8AjqKT1Q</recordid><startdate>2019</startdate><enddate>2019</enddate><creator>Zheng, Yazhao</creator><creator>Li, Shouliang</creator><creator>Du, Juan</creator><creator>Li, Pengyu</creator><creator>Jia, Bowen</creator><general>Hindawi Publishing Corporation</general><general>Hindawi</general><general>John Wiley &amp; Sons, Inc</general><general>Hindawi Limited</general><general>Hindawi-Wiley</general><scope>ADJCN</scope><scope>AHFXO</scope><scope>AHMDM</scope><scope>RHU</scope><scope>RHW</scope><scope>RHX</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7XB</scope><scope>8FE</scope><scope>8FG</scope><scope>8FK</scope><scope>8G5</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>GUQSH</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>M2O</scope><scope>MBDVC</scope><scope>P5Z</scope><scope>P62</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-3333-0244</orcidid><orcidid>https://orcid.org/0000-0001-7090-0811</orcidid><orcidid>https://orcid.org/0000-0002-1703-4026</orcidid></search><sort><creationdate>2019</creationdate><title>The Synchronization of N Cascade-Coupled Chaotic Systems</title><author>Zheng, Yazhao ; Li, Shouliang ; Du, Juan ; Li, Pengyu ; Jia, Bowen</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Chaos theory</topic><topic>Computer simulation</topic><topic>Coupling</topic><topic>Dynamical systems</topic><topic>Signal processing</topic><topic>Stability criteria</topic><topic>Synchronism</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zheng, Yazhao</creatorcontrib><creatorcontrib>Li, Shouliang</creatorcontrib><creatorcontrib>Du, Juan</creatorcontrib><creatorcontrib>Li, Pengyu</creatorcontrib><creatorcontrib>Jia, Bowen</creatorcontrib><collection>الدوريات العلمية والإحصائية - e-Marefa Academic and Statistical Periodicals</collection><collection>معرفة - المحتوى العربي الأكاديمي المتكامل - e-Marefa Academic Complete</collection><collection>قاعدة العلوم الإنسانية - e-Marefa Humanities</collection><collection>Hindawi Publishing Complete</collection><collection>Hindawi Publishing Subscription Journals</collection><collection>Hindawi Publishing Open Access Journals</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>Research Library (Alumni Edition)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies &amp; Aerospace Database‎ (1962 - current)</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>Research Library Prep</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Research Library</collection><collection>Research Library (Corporate)</collection><collection>ProQuest advanced technologies &amp; aerospace journals</collection><collection>ProQuest Advanced Technologies &amp; Aerospace Collection</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Complexity (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zheng, Yazhao</au><au>Li, Shouliang</au><au>Du, Juan</au><au>Li, Pengyu</au><au>Jia, Bowen</au><au>Gupta, Mahendra K.</au><au>Mahendra K Gupta</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>The Synchronization of N Cascade-Coupled Chaotic Systems</atitle><jtitle>Complexity (New York, N.Y.)</jtitle><date>2019</date><risdate>2019</risdate><volume>2019</volume><issue>2019</issue><spage>1</spage><epage>10</epage><pages>1-10</pages><issn>1076-2787</issn><eissn>1099-0526</eissn><abstract>In this paper, we investigate a novel synchronization method, which consists of n n≥2 cascade-coupled chaotic systems. Furthermore, as the number of chaotic systems decreases from n to 2, the proposed synchronization will transform into bidirectional coupling synchronization. Based on Lyapunov stability theory, a general criterion is proposed for choosing the appropriate coupling parameters to ensure cascading synchronization. Moreover, 4 Lü systems are taken as an example and the corresponding numerical simulations demonstrate the effectiveness of our idea.</abstract><cop>Cairo, Egypt</cop><pub>Hindawi Publishing Corporation</pub><doi>10.1155/2019/2709820</doi><tpages>10</tpages><orcidid>https://orcid.org/0000-0003-3333-0244</orcidid><orcidid>https://orcid.org/0000-0001-7090-0811</orcidid><orcidid>https://orcid.org/0000-0002-1703-4026</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1076-2787
ispartof Complexity (New York, N.Y.), 2019, Vol.2019 (2019), p.1-10
issn 1076-2787
1099-0526
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_131fb4ad2dc241f9961264941fe3f8df
source Wiley Open Access
subjects Chaos theory
Computer simulation
Coupling
Dynamical systems
Signal processing
Stability criteria
Synchronism
title The Synchronization of N Cascade-Coupled Chaotic Systems
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-22T20%3A11%3A47IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=The%20Synchronization%20of%20N%20Cascade-Coupled%20Chaotic%20Systems&rft.jtitle=Complexity%20(New%20York,%20N.Y.)&rft.au=Zheng,%20Yazhao&rft.date=2019&rft.volume=2019&rft.issue=2019&rft.spage=1&rft.epage=10&rft.pages=1-10&rft.issn=1076-2787&rft.eissn=1099-0526&rft_id=info:doi/10.1155/2019/2709820&rft_dat=%3Cgale_doaj_%3EA615313234%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c465t-e3d219e7b553ce0c7fe594103a1b35df106a22113a9a472b204d0b9e6c87ab703%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2329686574&rft_id=info:pmid/&rft_galeid=A615313234&rfr_iscdi=true