Loading…
Energetic and Exergetic Analyses of an Experimental Earth–Air Heat Exchanger in the Northeast of France
Earth–air heat exchanger (EAHE) systems are used to pre-heat or pre-cool air before entering into a building using shallow geothermal energy. Assessment of EAHE systems is important to quantify the profitability of these systems. For this purpose, an EAHE system built at ICUBE at the University of S...
Saved in:
Published in: | Energies (Basel) 2023-02, Vol.16 (3), p.1542 |
---|---|
Main Authors: | , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Earth–air heat exchanger (EAHE) systems are used to pre-heat or pre-cool air before entering into a building using shallow geothermal energy. Assessment of EAHE systems is important to quantify the profitability of these systems. For this purpose, an EAHE system built at ICUBE at the University of Strasbourg in the northeast of France was studied using energy and exergy analyses for a typical heating period (between 25 February and 3 March). Energy analysis was used to determine the heat gained by the air in the system during the studied period and to determine the Coefficient Of Performance (COP) of the system. Additionally, exergy analysis, which considered temperature, pressure, humidity, and the variation in the control volume boundary temperature, was realized to determine inefficiencies in the system by determining the exergy destroyed in each component of the system and evaluating its exergetic efficiency. Results showed that the heat energy gained using the system was around 63 kWh and that the exergetic efficiency of the system was about 57% on average. The comparison of exergetic efficiency between the EAHE components showed that the fan has the lowest performance and should be improved to achieve better overall performance. |
---|---|
ISSN: | 1996-1073 1996-1073 |
DOI: | 10.3390/en16031542 |