Loading…
Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes
Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemi...
Saved in:
Published in: | Nanomaterials (Basel, Switzerland) Switzerland), 2022-11, Vol.12 (22), p.3936 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13 |
---|---|
cites | cdi_FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13 |
container_end_page | |
container_issue | 22 |
container_start_page | 3936 |
container_title | Nanomaterials (Basel, Switzerland) |
container_volume | 12 |
creator | Zamudio-García, Javier Caizán-Juanarena, Leire Porras-Vázquez, José M. Losilla, Enrique R. Marrero-López, David |
description | Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition onto different electrolytes: Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), and Bi1.5Y0.5O3-δ (BYO). The ionic conductivity of the electrolyte has a great influence on the electrochemical performance of LSCF due to the improved oxide ion transport at the electrode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO, with values ranging from 0.21 Ω cm2 for YSZ to 0.058 Ω cm2 for BYO at 700 °C. In addition, we demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the current collector material on the electrochemical performance of LSCF electrodes is also analyzed. |
doi_str_mv | 10.3390/nano12223936 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1331486d592c4c17b1b25f65deec7516</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1331486d592c4c17b1b25f65deec7516</doaj_id><sourcerecordid>2739448760</sourcerecordid><originalsourceid>FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13</originalsourceid><addsrcrecordid>eNpVkc1q3DAQgEVpoGGbWx7A0Gvt6t_SpVCWJF1YmtIkZyHLo10vjpRKciC99KX6HH2mOrtLSXSR-DTzjTSD0DnBDWMafwo2REIpZZrJN-iU4lbXXGvy9sX5HTrLeYfnpQlTgp2i33ch2UcYh7CpyhaqVfDjBMFBFf0eXIzgSorjU5lR2KPvcbRp-GXLMIMfkIdc7DHj2_yIXNLkypSgr9YWN_Im4YYvI27oJeBGXbP6759qacs29pDfoxNvxwxnx32B7i4vbpdf6_X11Wr5ZV07LkSpKWFCM-tVxzuLGWihe60cbaWjync9VcRpTrUSxDPaKc_7zoOQBHcWMBC2QKuDt492Zx7ScG_Tk4l2MHsQ08bYVAY3giGMEa5kLzR13JG2Ix0VXooewLWCyNn1-eB6mLp76B2Ekuz4Svr6Jgxbs4mPRkstn9u-QB-OghR_TpCL2cUphfn_hrZMc65aieeoj4col2LOCfz_CgSb55GblyNn_wDUKp-2</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2739448760</pqid></control><display><type>article</type><title>Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Zamudio-García, Javier ; Caizán-Juanarena, Leire ; Porras-Vázquez, José M. ; Losilla, Enrique R. ; Marrero-López, David</creator><creatorcontrib>Zamudio-García, Javier ; Caizán-Juanarena, Leire ; Porras-Vázquez, José M. ; Losilla, Enrique R. ; Marrero-López, David</creatorcontrib><description>Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition onto different electrolytes: Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), and Bi1.5Y0.5O3-δ (BYO). The ionic conductivity of the electrolyte has a great influence on the electrochemical performance of LSCF due to the improved oxide ion transport at the electrode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO, with values ranging from 0.21 Ω cm2 for YSZ to 0.058 Ω cm2 for BYO at 700 °C. In addition, we demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the current collector material on the electrochemical performance of LSCF electrodes is also analyzed.</description><identifier>ISSN: 2079-4991</identifier><identifier>EISSN: 2079-4991</identifier><identifier>DOI: 10.3390/nano12223936</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>cathode ; Cathodes ; Cathodic polarization ; Chemical reactions ; Conductivity ; Constraining ; Crystal structure ; Electrochemical analysis ; Electrochemistry ; Electrode polarization ; Electrodes ; electrolyte ; Electrolytes ; Equivalent circuits ; Ion currents ; Ion transport ; Microstructure ; Morphology ; Nanostructure ; nanostructured materials ; Nitrates ; Polarization ; Pyrolysis ; Scanning electron microscopy ; SOFC ; Software ; Spectrum analysis ; spray-pyrolysis ; Yttria-stabilized zirconia</subject><ispartof>Nanomaterials (Basel, Switzerland), 2022-11, Vol.12 (22), p.3936</ispartof><rights>2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2022 by the authors. 2022</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13</citedby><cites>FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13</cites><orcidid>0000-0002-2673-1413 ; 0000-0001-6717-6762 ; 0000-0003-0632-6442 ; 0000-0002-3361-2340 ; 0000-0002-3701-4700</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2739448760/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2739448760?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,44590,53791,53793,75126</link.rule.ids></links><search><creatorcontrib>Zamudio-García, Javier</creatorcontrib><creatorcontrib>Caizán-Juanarena, Leire</creatorcontrib><creatorcontrib>Porras-Vázquez, José M.</creatorcontrib><creatorcontrib>Losilla, Enrique R.</creatorcontrib><creatorcontrib>Marrero-López, David</creatorcontrib><title>Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes</title><title>Nanomaterials (Basel, Switzerland)</title><description>Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition onto different electrolytes: Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), and Bi1.5Y0.5O3-δ (BYO). The ionic conductivity of the electrolyte has a great influence on the electrochemical performance of LSCF due to the improved oxide ion transport at the electrode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO, with values ranging from 0.21 Ω cm2 for YSZ to 0.058 Ω cm2 for BYO at 700 °C. In addition, we demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the current collector material on the electrochemical performance of LSCF electrodes is also analyzed.</description><subject>cathode</subject><subject>Cathodes</subject><subject>Cathodic polarization</subject><subject>Chemical reactions</subject><subject>Conductivity</subject><subject>Constraining</subject><subject>Crystal structure</subject><subject>Electrochemical analysis</subject><subject>Electrochemistry</subject><subject>Electrode polarization</subject><subject>Electrodes</subject><subject>electrolyte</subject><subject>Electrolytes</subject><subject>Equivalent circuits</subject><subject>Ion currents</subject><subject>Ion transport</subject><subject>Microstructure</subject><subject>Morphology</subject><subject>Nanostructure</subject><subject>nanostructured materials</subject><subject>Nitrates</subject><subject>Polarization</subject><subject>Pyrolysis</subject><subject>Scanning electron microscopy</subject><subject>SOFC</subject><subject>Software</subject><subject>Spectrum analysis</subject><subject>spray-pyrolysis</subject><subject>Yttria-stabilized zirconia</subject><issn>2079-4991</issn><issn>2079-4991</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2022</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkc1q3DAQgEVpoGGbWx7A0Gvt6t_SpVCWJF1YmtIkZyHLo10vjpRKciC99KX6HH2mOrtLSXSR-DTzjTSD0DnBDWMafwo2REIpZZrJN-iU4lbXXGvy9sX5HTrLeYfnpQlTgp2i33ch2UcYh7CpyhaqVfDjBMFBFf0eXIzgSorjU5lR2KPvcbRp-GXLMIMfkIdc7DHj2_yIXNLkypSgr9YWN_Im4YYvI27oJeBGXbP6759qacs29pDfoxNvxwxnx32B7i4vbpdf6_X11Wr5ZV07LkSpKWFCM-tVxzuLGWihe60cbaWjync9VcRpTrUSxDPaKc_7zoOQBHcWMBC2QKuDt492Zx7ScG_Tk4l2MHsQ08bYVAY3giGMEa5kLzR13JG2Ix0VXooewLWCyNn1-eB6mLp76B2Ekuz4Svr6Jgxbs4mPRkstn9u-QB-OghR_TpCL2cUphfn_hrZMc65aieeoj4col2LOCfz_CgSb55GblyNn_wDUKp-2</recordid><startdate>20221108</startdate><enddate>20221108</enddate><creator>Zamudio-García, Javier</creator><creator>Caizán-Juanarena, Leire</creator><creator>Porras-Vázquez, José M.</creator><creator>Losilla, Enrique R.</creator><creator>Marrero-López, David</creator><general>MDPI AG</general><general>MDPI</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7QF</scope><scope>7QO</scope><scope>7QQ</scope><scope>7SC</scope><scope>7SE</scope><scope>7SP</scope><scope>7SR</scope><scope>7TA</scope><scope>7TB</scope><scope>7U5</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>F28</scope><scope>FR3</scope><scope>GNUQQ</scope><scope>H8D</scope><scope>H8G</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>JQ2</scope><scope>KB.</scope><scope>KR7</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M7P</scope><scope>P64</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-2673-1413</orcidid><orcidid>https://orcid.org/0000-0001-6717-6762</orcidid><orcidid>https://orcid.org/0000-0003-0632-6442</orcidid><orcidid>https://orcid.org/0000-0002-3361-2340</orcidid><orcidid>https://orcid.org/0000-0002-3701-4700</orcidid></search><sort><creationdate>20221108</creationdate><title>Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes</title><author>Zamudio-García, Javier ; Caizán-Juanarena, Leire ; Porras-Vázquez, José M. ; Losilla, Enrique R. ; Marrero-López, David</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2022</creationdate><topic>cathode</topic><topic>Cathodes</topic><topic>Cathodic polarization</topic><topic>Chemical reactions</topic><topic>Conductivity</topic><topic>Constraining</topic><topic>Crystal structure</topic><topic>Electrochemical analysis</topic><topic>Electrochemistry</topic><topic>Electrode polarization</topic><topic>Electrodes</topic><topic>electrolyte</topic><topic>Electrolytes</topic><topic>Equivalent circuits</topic><topic>Ion currents</topic><topic>Ion transport</topic><topic>Microstructure</topic><topic>Morphology</topic><topic>Nanostructure</topic><topic>nanostructured materials</topic><topic>Nitrates</topic><topic>Polarization</topic><topic>Pyrolysis</topic><topic>Scanning electron microscopy</topic><topic>SOFC</topic><topic>Software</topic><topic>Spectrum analysis</topic><topic>spray-pyrolysis</topic><topic>Yttria-stabilized zirconia</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zamudio-García, Javier</creatorcontrib><creatorcontrib>Caizán-Juanarena, Leire</creatorcontrib><creatorcontrib>Porras-Vázquez, José M.</creatorcontrib><creatorcontrib>Losilla, Enrique R.</creatorcontrib><creatorcontrib>Marrero-López, David</creatorcontrib><collection>CrossRef</collection><collection>Aluminium Industry Abstracts</collection><collection>Biotechnology Research Abstracts</collection><collection>Ceramic Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>Corrosion Abstracts</collection><collection>Electronics & Communications Abstracts</collection><collection>Engineered Materials Abstracts</collection><collection>Materials Business File</collection><collection>Mechanical & Transportation Engineering Abstracts</collection><collection>Solid State and Superconductivity Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Databases</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central Korea</collection><collection>ANTE: Abstracts in New Technology & Engineering</collection><collection>Engineering Research Database</collection><collection>ProQuest Central Student</collection><collection>Aerospace Database</collection><collection>Copper Technical Reference Library</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Materials Science Database</collection><collection>Civil Engineering Abstracts</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Biological Science Database</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Nanomaterials (Basel, Switzerland)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zamudio-García, Javier</au><au>Caizán-Juanarena, Leire</au><au>Porras-Vázquez, José M.</au><au>Losilla, Enrique R.</au><au>Marrero-López, David</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes</atitle><jtitle>Nanomaterials (Basel, Switzerland)</jtitle><date>2022-11-08</date><risdate>2022</risdate><volume>12</volume><issue>22</issue><spage>3936</spage><pages>3936-</pages><issn>2079-4991</issn><eissn>2079-4991</eissn><abstract>Large variations in the polarization resistance of La0.6Sr0.4Co0.2Fe0.8O3-δ (LSCF) cathodes are reported in the literature, which are usually related to different preparation methods, sintering temperatures, and resulting microstructures. However, the influence of the electrolyte on the electrochemical activity and the rate-limiting steps of LSCF remains unclear. In this work, LSCF nanostructured electrodes with identical microstructure are prepared by spray-pyrolysis deposition onto different electrolytes: Zr0.84Y0.16O1.92 (YSZ), Ce0.9Gd0.1O1.95 (CGO), La0.9Sr0.1Ga0.8Mg0.2O2.85 (LSGM), and Bi1.5Y0.5O3-δ (BYO). The ionic conductivity of the electrolyte has a great influence on the electrochemical performance of LSCF due to the improved oxide ion transport at the electrode/electrolyte interface, as well as the extended ionic conduction paths for the electrochemical reactions on the electrode surface. In this way, the polarization resistance of LSCF decreases as the ionic conductivity of the electrolyte increases in the following order: YSZ > LSGM > CGO > BYO, with values ranging from 0.21 Ω cm2 for YSZ to 0.058 Ω cm2 for BYO at 700 °C. In addition, we demonstrate by distribution of relaxation times and equivalent circuit models that the same rate-limiting steps for the ORR occur regardless of the electrolyte. Furthermore, the influence of the current collector material on the electrochemical performance of LSCF electrodes is also analyzed.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/nano12223936</doi><orcidid>https://orcid.org/0000-0002-2673-1413</orcidid><orcidid>https://orcid.org/0000-0001-6717-6762</orcidid><orcidid>https://orcid.org/0000-0003-0632-6442</orcidid><orcidid>https://orcid.org/0000-0002-3361-2340</orcidid><orcidid>https://orcid.org/0000-0002-3701-4700</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2079-4991 |
ispartof | Nanomaterials (Basel, Switzerland), 2022-11, Vol.12 (22), p.3936 |
issn | 2079-4991 2079-4991 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1331486d592c4c17b1b25f65deec7516 |
source | Publicly Available Content Database; PubMed Central |
subjects | cathode Cathodes Cathodic polarization Chemical reactions Conductivity Constraining Crystal structure Electrochemical analysis Electrochemistry Electrode polarization Electrodes electrolyte Electrolytes Equivalent circuits Ion currents Ion transport Microstructure Morphology Nanostructure nanostructured materials Nitrates Polarization Pyrolysis Scanning electron microscopy SOFC Software Spectrum analysis spray-pyrolysis Yttria-stabilized zirconia |
title | Unraveling the Influence of the Electrolyte on the Polarization Resistance of Nanostructured La0.6Sr0.4Co0.2Fe0.8O3-δ Cathodes |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-04T15%3A08%3A54IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Unraveling%20the%20Influence%20of%20the%20Electrolyte%20on%20the%20Polarization%20Resistance%20of%20Nanostructured%20La0.6Sr0.4Co0.2Fe0.8O3-%CE%B4%20Cathodes&rft.jtitle=Nanomaterials%20(Basel,%20Switzerland)&rft.au=Zamudio-Garc%C3%ADa,%20Javier&rft.date=2022-11-08&rft.volume=12&rft.issue=22&rft.spage=3936&rft.pages=3936-&rft.issn=2079-4991&rft.eissn=2079-4991&rft_id=info:doi/10.3390/nano12223936&rft_dat=%3Cproquest_doaj_%3E2739448760%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c455t-213593af8b4ba03e959d98c276c28fbd281c9429851f32b8f4dbfe5610bae0e13%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2739448760&rft_id=info:pmid/&rfr_iscdi=true |