Loading…

Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement

Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory...

Full description

Saved in:
Bibliographic Details
Published in:Bioengineering (Basel) 2024-03, Vol.11 (3), p.269
Main Authors: Goetz, Aurèle, Jeken-Rico, Pablo, Chau, Yves, Sédat, Jacques, Larcher, Aurélien, Hachem, Elie
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983
cites cdi_FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983
container_end_page
container_issue 3
container_start_page 269
container_title Bioengineering (Basel)
container_volume 11
creator Goetz, Aurèle
Jeken-Rico, Pablo
Chau, Yves
Sédat, Jacques
Larcher, Aurélien
Hachem, Elie
description Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.
doi_str_mv 10.3390/bioengineering11030269
format article
fullrecord <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1334f4aeb76b4519a2c956597ee7d851</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A788243727</galeid><doaj_id>oai_doaj_org_article_1334f4aeb76b4519a2c956597ee7d851</doaj_id><sourcerecordid>A788243727</sourcerecordid><originalsourceid>FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983</originalsourceid><addsrcrecordid>eNptkstu1DAUhiMEolXpK1SR2MBiiu-JVyiqgBlpEBsQS8txTlKPHLvYyUjz9jidUjpV5YWt4___7HMpiiuMrimV6FNrA_jBeoBo_YAxoogI-ao4JxSJFaecvX5yPisuU9ohhDAlnAj2tjijNaeMM3ZerBuv3SHZVIa-3PgpahO1t9qVjYc5HtJYrjWMoTt4PVqTysZNEKEr20P5WztXfg97GMFP74o3vXYJLh_2i-LX1y8_b9ar7Y9vm5tmuzICo2klMBBTCWo60dYVwwJT1homDSJQE4Y4NXUnkQDWMoNawbsW6yzggHpOZU0vis2R2wW9U3fRjjoeVNBW3QdCHJSOkzUOFKaU9UxDW4mWcSw1MZILLiuAqqs5zqzPR9bd3I7QGVjydyfQ0xtvb9UQ9gojKWpCqkz4eCTcPvOtm61aYojVLNe83i-vfXh4LYY_M6RJjTYZcE57CHNSFCHKKJNswb5_Jt2FOeZOJUWkxLmVWfhfNeicrfV9WNq3QFVT1bmatLr_4vULqrw6yA0NHnqb4ycGcTSYGFKK0D8mhpFa5k-9PH_ZePW0nI-2f9NG_wJYANbh</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2991001434</pqid></control><display><type>article</type><title>Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement</title><source>Publicly Available Content Database</source><source>PubMed Central</source><creator>Goetz, Aurèle ; Jeken-Rico, Pablo ; Chau, Yves ; Sédat, Jacques ; Larcher, Aurélien ; Hachem, Elie</creator><creatorcontrib>Goetz, Aurèle ; Jeken-Rico, Pablo ; Chau, Yves ; Sédat, Jacques ; Larcher, Aurélien ; Hachem, Elie</creatorcontrib><description>Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.</description><identifier>ISSN: 2306-5354</identifier><identifier>EISSN: 2306-5354</identifier><identifier>DOI: 10.3390/bioengineering11030269</identifier><identifier>PMID: 38534544</identifier><language>eng</language><publisher>Switzerland: MDPI AG</publisher><subject>Aneurysm ; Aneurysms ; arterial tissue modelling ; Boundary conditions ; Brain research ; Care and treatment ; Computational fluid dynamics ; Decision-making ; Diagnosis ; Engineering Sciences ; Flow distribution ; Fluid-structure interaction ; Fluids mechanics ; Geometry ; haemodynamics ; Health aspects ; Health risk assessment ; Hemodynamic monitoring ; Hemodynamics ; Interaction models ; intracranial aneurysm ; Intracranial aneurysms ; Mechanics ; Methods ; Modelling ; Rigid walls ; Risk assessment ; Rupture ; Simulation</subject><ispartof>Bioengineering (Basel), 2024-03, Vol.11 (3), p.269</ispartof><rights>COPYRIGHT 2024 MDPI AG</rights><rights>2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>Distributed under a Creative Commons Attribution 4.0 International License</rights><rights>2024 by the authors. 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983</citedby><cites>FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983</cites><orcidid>0000-0001-7866-6791 ; 0000-0002-8163-4448 ; 0000-0002-2202-6397</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2991001434/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2991001434?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25751,27922,27923,37010,37011,44588,53789,53791,74896</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38534544$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink><backlink>$$Uhttps://minesparis-psl.hal.science/hal-04842648$$DView record in HAL$$Hfree_for_read</backlink></links><search><creatorcontrib>Goetz, Aurèle</creatorcontrib><creatorcontrib>Jeken-Rico, Pablo</creatorcontrib><creatorcontrib>Chau, Yves</creatorcontrib><creatorcontrib>Sédat, Jacques</creatorcontrib><creatorcontrib>Larcher, Aurélien</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><title>Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement</title><title>Bioengineering (Basel)</title><addtitle>Bioengineering (Basel)</addtitle><description>Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.</description><subject>Aneurysm</subject><subject>Aneurysms</subject><subject>arterial tissue modelling</subject><subject>Boundary conditions</subject><subject>Brain research</subject><subject>Care and treatment</subject><subject>Computational fluid dynamics</subject><subject>Decision-making</subject><subject>Diagnosis</subject><subject>Engineering Sciences</subject><subject>Flow distribution</subject><subject>Fluid-structure interaction</subject><subject>Fluids mechanics</subject><subject>Geometry</subject><subject>haemodynamics</subject><subject>Health aspects</subject><subject>Health risk assessment</subject><subject>Hemodynamic monitoring</subject><subject>Hemodynamics</subject><subject>Interaction models</subject><subject>intracranial aneurysm</subject><subject>Intracranial aneurysms</subject><subject>Mechanics</subject><subject>Methods</subject><subject>Modelling</subject><subject>Rigid walls</subject><subject>Risk assessment</subject><subject>Rupture</subject><subject>Simulation</subject><issn>2306-5354</issn><issn>2306-5354</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkstu1DAUhiMEolXpK1SR2MBiiu-JVyiqgBlpEBsQS8txTlKPHLvYyUjz9jidUjpV5YWt4___7HMpiiuMrimV6FNrA_jBeoBo_YAxoogI-ao4JxSJFaecvX5yPisuU9ohhDAlnAj2tjijNaeMM3ZerBuv3SHZVIa-3PgpahO1t9qVjYc5HtJYrjWMoTt4PVqTysZNEKEr20P5WztXfg97GMFP74o3vXYJLh_2i-LX1y8_b9ar7Y9vm5tmuzICo2klMBBTCWo60dYVwwJT1homDSJQE4Y4NXUnkQDWMoNawbsW6yzggHpOZU0vis2R2wW9U3fRjjoeVNBW3QdCHJSOkzUOFKaU9UxDW4mWcSw1MZILLiuAqqs5zqzPR9bd3I7QGVjydyfQ0xtvb9UQ9gojKWpCqkz4eCTcPvOtm61aYojVLNe83i-vfXh4LYY_M6RJjTYZcE57CHNSFCHKKJNswb5_Jt2FOeZOJUWkxLmVWfhfNeicrfV9WNq3QFVT1bmatLr_4vULqrw6yA0NHnqb4ycGcTSYGFKK0D8mhpFa5k-9PH_ZePW0nI-2f9NG_wJYANbh</recordid><startdate>20240309</startdate><enddate>20240309</enddate><creator>Goetz, Aurèle</creator><creator>Jeken-Rico, Pablo</creator><creator>Chau, Yves</creator><creator>Sédat, Jacques</creator><creator>Larcher, Aurélien</creator><creator>Hachem, Elie</creator><general>MDPI AG</general><general>MDPI</general><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>L6V</scope><scope>LK8</scope><scope>M7P</scope><scope>M7S</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PTHSS</scope><scope>7X8</scope><scope>1XC</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0001-7866-6791</orcidid><orcidid>https://orcid.org/0000-0002-8163-4448</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid></search><sort><creationdate>20240309</creationdate><title>Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement</title><author>Goetz, Aurèle ; Jeken-Rico, Pablo ; Chau, Yves ; Sédat, Jacques ; Larcher, Aurélien ; Hachem, Elie</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Aneurysm</topic><topic>Aneurysms</topic><topic>arterial tissue modelling</topic><topic>Boundary conditions</topic><topic>Brain research</topic><topic>Care and treatment</topic><topic>Computational fluid dynamics</topic><topic>Decision-making</topic><topic>Diagnosis</topic><topic>Engineering Sciences</topic><topic>Flow distribution</topic><topic>Fluid-structure interaction</topic><topic>Fluids mechanics</topic><topic>Geometry</topic><topic>haemodynamics</topic><topic>Health aspects</topic><topic>Health risk assessment</topic><topic>Hemodynamic monitoring</topic><topic>Hemodynamics</topic><topic>Interaction models</topic><topic>intracranial aneurysm</topic><topic>Intracranial aneurysms</topic><topic>Mechanics</topic><topic>Methods</topic><topic>Modelling</topic><topic>Rigid walls</topic><topic>Risk assessment</topic><topic>Rupture</topic><topic>Simulation</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Goetz, Aurèle</creatorcontrib><creatorcontrib>Jeken-Rico, Pablo</creatorcontrib><creatorcontrib>Chau, Yves</creatorcontrib><creatorcontrib>Sédat, Jacques</creatorcontrib><creatorcontrib>Larcher, Aurélien</creatorcontrib><creatorcontrib>Hachem, Elie</creatorcontrib><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central UK/Ireland</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Engineering Collection</collection><collection>ProQuest Biological Science Collection</collection><collection>Biological Science Database</collection><collection>Engineering Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Engineering Collection</collection><collection>MEDLINE - Academic</collection><collection>Hyper Article en Ligne (HAL)</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Bioengineering (Basel)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Goetz, Aurèle</au><au>Jeken-Rico, Pablo</au><au>Chau, Yves</au><au>Sédat, Jacques</au><au>Larcher, Aurélien</au><au>Hachem, Elie</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement</atitle><jtitle>Bioengineering (Basel)</jtitle><addtitle>Bioengineering (Basel)</addtitle><date>2024-03-09</date><risdate>2024</risdate><volume>11</volume><issue>3</issue><spage>269</spage><pages>269-</pages><issn>2306-5354</issn><eissn>2306-5354</eissn><abstract>Computational fluid dynamics is intensively used to deepen our understanding of aneurysm growth and rupture in an attempt to support physicians during therapy planning. Numerous studies assumed fully rigid vessel walls in their simulations, whose sole haemodynamics may fail to provide a satisfactory criterion for rupture risk assessment. Moreover, direct in vivo observations of intracranial aneurysm pulsation were recently reported, encouraging the development of fluid-structure interaction for their modelling and for new assessments. In this work, we describe a new fluid-structure interaction functional setting for the careful evaluation of different aneurysm shapes. The configurations consist of three real aneurysm domes positioned on a toroidal channel. All geometric features, employed meshes, flow quantities, comparisons with the rigid wall model and corresponding plots are provided for the sake of reproducibility. The results emphasise the alteration of flow patterns and haemodynamic descriptors when wall deformations were taken into account compared with a standard rigid wall approach, thereby underlining the impact of fluid-structure interaction modelling.</abstract><cop>Switzerland</cop><pub>MDPI AG</pub><pmid>38534544</pmid><doi>10.3390/bioengineering11030269</doi><orcidid>https://orcid.org/0000-0001-7866-6791</orcidid><orcidid>https://orcid.org/0000-0002-8163-4448</orcidid><orcidid>https://orcid.org/0000-0002-2202-6397</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2306-5354
ispartof Bioengineering (Basel), 2024-03, Vol.11 (3), p.269
issn 2306-5354
2306-5354
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1334f4aeb76b4519a2c956597ee7d851
source Publicly Available Content Database; PubMed Central
subjects Aneurysm
Aneurysms
arterial tissue modelling
Boundary conditions
Brain research
Care and treatment
Computational fluid dynamics
Decision-making
Diagnosis
Engineering Sciences
Flow distribution
Fluid-structure interaction
Fluids mechanics
Geometry
haemodynamics
Health aspects
Health risk assessment
Hemodynamic monitoring
Hemodynamics
Interaction models
intracranial aneurysm
Intracranial aneurysms
Mechanics
Methods
Modelling
Rigid walls
Risk assessment
Rupture
Simulation
title Analysis of Intracranial Aneurysm Haemodynamics Altered by Wall Movement
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-10T06%3A19%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Analysis%20of%20Intracranial%20Aneurysm%20Haemodynamics%20Altered%20by%20Wall%20Movement&rft.jtitle=Bioengineering%20(Basel)&rft.au=Goetz,%20Aur%C3%A8le&rft.date=2024-03-09&rft.volume=11&rft.issue=3&rft.spage=269&rft.pages=269-&rft.issn=2306-5354&rft.eissn=2306-5354&rft_id=info:doi/10.3390/bioengineering11030269&rft_dat=%3Cgale_doaj_%3EA788243727%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c610t-61e2c763cd6b87416134bc49c02e824053c8d906e4b4c0b65db1abc45e0f53983%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2991001434&rft_id=info:pmid/38534544&rft_galeid=A788243727&rfr_iscdi=true