Loading…
Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address th...
Saved in:
Published in: | eLife 2019-12, Vol.8 |
---|---|
Main Authors: | , , , , , , , , , , , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03 |
---|---|
cites | cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03 |
container_end_page | |
container_issue | |
container_start_page | |
container_title | eLife |
container_volume | 8 |
creator | Kirk, Isa Kristina Simon, Christian Banasik, Karina Holm, Peter Christoffer Haue, Amalie Dahl Jensen, Peter Bjødstrup Juhl Jensen, Lars Rodríguez, Cristina Leal Pedersen, Mette Krogh Eriksson, Robert Andersen, Henrik Ullits Almdal, Thomas Bork-Jensen, Jette Grarup, Niels Borch-Johnsen, Knut Pedersen, Oluf Pociot, Flemming Hansen, Torben Bergholdt, Regine Rossing, Peter Brunak, Søren |
description | Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities. |
doi_str_mv | 10.7554/eLife.44941 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71</doaj_id><sourcerecordid>2323479890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</originalsourceid><addsrcrecordid>eNpdkt1rFDEUxQdRbGn75LsEfBF0a75mJ3kRpFRbWBBEwbeQj5vZbGeSNZkR9r83u1tL27zc5ObHyeHmNM0bgi-7tuWfYBU8XHIuOXnRnFLc4gUW_PfLR_uT5qKUDa6r40IQ-bo5YUQQwZbytLlbhXgXYo_6YWdhDBa5XcnQz4OeQoooROSCNjBBQVNCZTdupzSWj8imMWUTXJgC1KOODvUQYQq2guuc5n6Nrm9-IKcnjcYQ6xvnzSuvhwIX9_Ws-fX1-ufVzWL1_dvt1ZfVwvKunRZESLDcE8mk484LKhmVFDw1S-MYYY5Q6Q04ww2mntYx2Ap4qz0mrLWYnTW3R12X9EZtcxh13qmkgzo0Uu6VztXoAIowpplgRjrZcsvBdJp2WAuHjbGmI1Xr81FrO5sRnIU4ZT08EX16E8Na9emvWkrMKd0LvL8XyOnPDGVSYygWhkFHSHNRlFHGOynk3ve7Z-gmzTnWUVWKkVYsMZeV-nCkbE6lfpV_MEOw2mdCHTKhDpmo9NvH_h_Y_wlg_wATOLQI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331586049</pqid></control><display><type>article</type><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</creator><creatorcontrib>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</creatorcontrib><description>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.44941</identifier><identifier>PMID: 31818369</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Child ; Codes ; Cohort Studies ; comorbidities ; Comorbidity ; Computational and Systems Biology ; Data Mining ; Denmark - epidemiology ; Diabetes ; Diabetes Complications - diagnosis ; Diabetes Complications - epidemiology ; Diabetes Complications - genetics ; Diabetes Complications - therapy ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - epidemiology ; Diabetes Mellitus - genetics ; Diabetes Mellitus - therapy ; diabetes subtypes ; EHR ; Electronic Health Records ; Electronic medical records ; Epidemiology and Global Health ; Female ; genotyping ; Humans ; Insulin ; Male ; Medical records ; Middle Aged ; Patients ; Phenotypic variations ; Physiology ; Risk Factors ; Single-nucleotide polymorphism ; Terminology as Topic ; text mining ; Treatment Outcome ; Vocabulary ; Young Adult</subject><ispartof>eLife, 2019-12, Vol.8</ispartof><rights>2019, Kirk et al.</rights><rights>2019, Kirk et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Kirk et al 2019 Kirk et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</citedby><cites>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</cites><orcidid>0000-0003-0316-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331586049/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331586049?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31818369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirk, Isa Kristina</creatorcontrib><creatorcontrib>Simon, Christian</creatorcontrib><creatorcontrib>Banasik, Karina</creatorcontrib><creatorcontrib>Holm, Peter Christoffer</creatorcontrib><creatorcontrib>Haue, Amalie Dahl</creatorcontrib><creatorcontrib>Jensen, Peter Bjødstrup</creatorcontrib><creatorcontrib>Juhl Jensen, Lars</creatorcontrib><creatorcontrib>Rodríguez, Cristina Leal</creatorcontrib><creatorcontrib>Pedersen, Mette Krogh</creatorcontrib><creatorcontrib>Eriksson, Robert</creatorcontrib><creatorcontrib>Andersen, Henrik Ullits</creatorcontrib><creatorcontrib>Almdal, Thomas</creatorcontrib><creatorcontrib>Bork-Jensen, Jette</creatorcontrib><creatorcontrib>Grarup, Niels</creatorcontrib><creatorcontrib>Borch-Johnsen, Knut</creatorcontrib><creatorcontrib>Pedersen, Oluf</creatorcontrib><creatorcontrib>Pociot, Flemming</creatorcontrib><creatorcontrib>Hansen, Torben</creatorcontrib><creatorcontrib>Bergholdt, Regine</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Brunak, Søren</creatorcontrib><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><title>eLife</title><addtitle>Elife</addtitle><description>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Child</subject><subject>Codes</subject><subject>Cohort Studies</subject><subject>comorbidities</subject><subject>Comorbidity</subject><subject>Computational and Systems Biology</subject><subject>Data Mining</subject><subject>Denmark - epidemiology</subject><subject>Diabetes</subject><subject>Diabetes Complications - diagnosis</subject><subject>Diabetes Complications - epidemiology</subject><subject>Diabetes Complications - genetics</subject><subject>Diabetes Complications - therapy</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes Mellitus - therapy</subject><subject>diabetes subtypes</subject><subject>EHR</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Epidemiology and Global Health</subject><subject>Female</subject><subject>genotyping</subject><subject>Humans</subject><subject>Insulin</subject><subject>Male</subject><subject>Medical records</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>Phenotypic variations</subject><subject>Physiology</subject><subject>Risk Factors</subject><subject>Single-nucleotide polymorphism</subject><subject>Terminology as Topic</subject><subject>text mining</subject><subject>Treatment Outcome</subject><subject>Vocabulary</subject><subject>Young Adult</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1rFDEUxQdRbGn75LsEfBF0a75mJ3kRpFRbWBBEwbeQj5vZbGeSNZkR9r83u1tL27zc5ObHyeHmNM0bgi-7tuWfYBU8XHIuOXnRnFLc4gUW_PfLR_uT5qKUDa6r40IQ-bo5YUQQwZbytLlbhXgXYo_6YWdhDBa5XcnQz4OeQoooROSCNjBBQVNCZTdupzSWj8imMWUTXJgC1KOODvUQYQq2guuc5n6Nrm9-IKcnjcYQ6xvnzSuvhwIX9_Ws-fX1-ufVzWL1_dvt1ZfVwvKunRZESLDcE8mk484LKhmVFDw1S-MYYY5Q6Q04ww2mntYx2Ap4qz0mrLWYnTW3R12X9EZtcxh13qmkgzo0Uu6VztXoAIowpplgRjrZcsvBdJp2WAuHjbGmI1Xr81FrO5sRnIU4ZT08EX16E8Na9emvWkrMKd0LvL8XyOnPDGVSYygWhkFHSHNRlFHGOynk3ve7Z-gmzTnWUVWKkVYsMZeV-nCkbE6lfpV_MEOw2mdCHTKhDpmo9NvH_h_Y_wlg_wATOLQI</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Kirk, Isa Kristina</creator><creator>Simon, Christian</creator><creator>Banasik, Karina</creator><creator>Holm, Peter Christoffer</creator><creator>Haue, Amalie Dahl</creator><creator>Jensen, Peter Bjødstrup</creator><creator>Juhl Jensen, Lars</creator><creator>Rodríguez, Cristina Leal</creator><creator>Pedersen, Mette Krogh</creator><creator>Eriksson, Robert</creator><creator>Andersen, Henrik Ullits</creator><creator>Almdal, Thomas</creator><creator>Bork-Jensen, Jette</creator><creator>Grarup, Niels</creator><creator>Borch-Johnsen, Knut</creator><creator>Pedersen, Oluf</creator><creator>Pociot, Flemming</creator><creator>Hansen, Torben</creator><creator>Bergholdt, Regine</creator><creator>Rossing, Peter</creator><creator>Brunak, Søren</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0316-5866</orcidid></search><sort><creationdate>20191210</creationdate><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><author>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Child</topic><topic>Codes</topic><topic>Cohort Studies</topic><topic>comorbidities</topic><topic>Comorbidity</topic><topic>Computational and Systems Biology</topic><topic>Data Mining</topic><topic>Denmark - epidemiology</topic><topic>Diabetes</topic><topic>Diabetes Complications - diagnosis</topic><topic>Diabetes Complications - epidemiology</topic><topic>Diabetes Complications - genetics</topic><topic>Diabetes Complications - therapy</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes Mellitus - therapy</topic><topic>diabetes subtypes</topic><topic>EHR</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Epidemiology and Global Health</topic><topic>Female</topic><topic>genotyping</topic><topic>Humans</topic><topic>Insulin</topic><topic>Male</topic><topic>Medical records</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>Phenotypic variations</topic><topic>Physiology</topic><topic>Risk Factors</topic><topic>Single-nucleotide polymorphism</topic><topic>Terminology as Topic</topic><topic>text mining</topic><topic>Treatment Outcome</topic><topic>Vocabulary</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirk, Isa Kristina</creatorcontrib><creatorcontrib>Simon, Christian</creatorcontrib><creatorcontrib>Banasik, Karina</creatorcontrib><creatorcontrib>Holm, Peter Christoffer</creatorcontrib><creatorcontrib>Haue, Amalie Dahl</creatorcontrib><creatorcontrib>Jensen, Peter Bjødstrup</creatorcontrib><creatorcontrib>Juhl Jensen, Lars</creatorcontrib><creatorcontrib>Rodríguez, Cristina Leal</creatorcontrib><creatorcontrib>Pedersen, Mette Krogh</creatorcontrib><creatorcontrib>Eriksson, Robert</creatorcontrib><creatorcontrib>Andersen, Henrik Ullits</creatorcontrib><creatorcontrib>Almdal, Thomas</creatorcontrib><creatorcontrib>Bork-Jensen, Jette</creatorcontrib><creatorcontrib>Grarup, Niels</creatorcontrib><creatorcontrib>Borch-Johnsen, Knut</creatorcontrib><creatorcontrib>Pedersen, Oluf</creatorcontrib><creatorcontrib>Pociot, Flemming</creatorcontrib><creatorcontrib>Hansen, Torben</creatorcontrib><creatorcontrib>Bergholdt, Regine</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Brunak, Søren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirk, Isa Kristina</au><au>Simon, Christian</au><au>Banasik, Karina</au><au>Holm, Peter Christoffer</au><au>Haue, Amalie Dahl</au><au>Jensen, Peter Bjødstrup</au><au>Juhl Jensen, Lars</au><au>Rodríguez, Cristina Leal</au><au>Pedersen, Mette Krogh</au><au>Eriksson, Robert</au><au>Andersen, Henrik Ullits</au><au>Almdal, Thomas</au><au>Bork-Jensen, Jette</au><au>Grarup, Niels</au><au>Borch-Johnsen, Knut</au><au>Pedersen, Oluf</au><au>Pociot, Flemming</au><au>Hansen, Torben</au><au>Bergholdt, Regine</au><au>Rossing, Peter</au><au>Brunak, Søren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>31818369</pmid><doi>10.7554/eLife.44941</doi><orcidid>https://orcid.org/0000-0003-0316-5866</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2050-084X |
ispartof | eLife, 2019-12, Vol.8 |
issn | 2050-084X 2050-084X |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71 |
source | Publicly Available Content (ProQuest); PubMed Central |
subjects | Adolescent Adult Aged Aged, 80 and over Algorithms Child Codes Cohort Studies comorbidities Comorbidity Computational and Systems Biology Data Mining Denmark - epidemiology Diabetes Diabetes Complications - diagnosis Diabetes Complications - epidemiology Diabetes Complications - genetics Diabetes Complications - therapy Diabetes mellitus Diabetes Mellitus - diagnosis Diabetes Mellitus - epidemiology Diabetes Mellitus - genetics Diabetes Mellitus - therapy diabetes subtypes EHR Electronic Health Records Electronic medical records Epidemiology and Global Health Female genotyping Humans Insulin Male Medical records Middle Aged Patients Phenotypic variations Physiology Risk Factors Single-nucleotide polymorphism Terminology as Topic text mining Treatment Outcome Vocabulary Young Adult |
title | Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20glycemic%20dysregulation%20in%20diabetes%20to%20symptoms,%20comorbidities,%20and%20genetics%20through%20EHR%20data%20mining&rft.jtitle=eLife&rft.au=Kirk,%20Isa%20Kristina&rft.date=2019-12-10&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.44941&rft_dat=%3Cproquest_doaj_%3E2323479890%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331586049&rft_id=info:pmid/31818369&rfr_iscdi=true |