Loading…

Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining

Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address th...

Full description

Saved in:
Bibliographic Details
Published in:eLife 2019-12, Vol.8
Main Authors: Kirk, Isa Kristina, Simon, Christian, Banasik, Karina, Holm, Peter Christoffer, Haue, Amalie Dahl, Jensen, Peter Bjødstrup, Juhl Jensen, Lars, Rodríguez, Cristina Leal, Pedersen, Mette Krogh, Eriksson, Robert, Andersen, Henrik Ullits, Almdal, Thomas, Bork-Jensen, Jette, Grarup, Niels, Borch-Johnsen, Knut, Pedersen, Oluf, Pociot, Flemming, Hansen, Torben, Bergholdt, Regine, Rossing, Peter, Brunak, Søren
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03
cites cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03
container_end_page
container_issue
container_start_page
container_title eLife
container_volume 8
creator Kirk, Isa Kristina
Simon, Christian
Banasik, Karina
Holm, Peter Christoffer
Haue, Amalie Dahl
Jensen, Peter Bjødstrup
Juhl Jensen, Lars
Rodríguez, Cristina Leal
Pedersen, Mette Krogh
Eriksson, Robert
Andersen, Henrik Ullits
Almdal, Thomas
Bork-Jensen, Jette
Grarup, Niels
Borch-Johnsen, Knut
Pedersen, Oluf
Pociot, Flemming
Hansen, Torben
Bergholdt, Regine
Rossing, Peter
Brunak, Søren
description Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.
doi_str_mv 10.7554/eLife.44941
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71</doaj_id><sourcerecordid>2323479890</sourcerecordid><originalsourceid>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</originalsourceid><addsrcrecordid>eNpdkt1rFDEUxQdRbGn75LsEfBF0a75mJ3kRpFRbWBBEwbeQj5vZbGeSNZkR9r83u1tL27zc5ObHyeHmNM0bgi-7tuWfYBU8XHIuOXnRnFLc4gUW_PfLR_uT5qKUDa6r40IQ-bo5YUQQwZbytLlbhXgXYo_6YWdhDBa5XcnQz4OeQoooROSCNjBBQVNCZTdupzSWj8imMWUTXJgC1KOODvUQYQq2guuc5n6Nrm9-IKcnjcYQ6xvnzSuvhwIX9_Ws-fX1-ufVzWL1_dvt1ZfVwvKunRZESLDcE8mk484LKhmVFDw1S-MYYY5Q6Q04ww2mntYx2Ap4qz0mrLWYnTW3R12X9EZtcxh13qmkgzo0Uu6VztXoAIowpplgRjrZcsvBdJp2WAuHjbGmI1Xr81FrO5sRnIU4ZT08EX16E8Na9emvWkrMKd0LvL8XyOnPDGVSYygWhkFHSHNRlFHGOynk3ve7Z-gmzTnWUVWKkVYsMZeV-nCkbE6lfpV_MEOw2mdCHTKhDpmo9NvH_h_Y_wlg_wATOLQI</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2331586049</pqid></control><display><type>article</type><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><source>Publicly Available Content (ProQuest)</source><source>PubMed Central</source><creator>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</creator><creatorcontrib>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</creatorcontrib><description>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</description><identifier>ISSN: 2050-084X</identifier><identifier>EISSN: 2050-084X</identifier><identifier>DOI: 10.7554/eLife.44941</identifier><identifier>PMID: 31818369</identifier><language>eng</language><publisher>England: eLife Sciences Publications Ltd</publisher><subject>Adolescent ; Adult ; Aged ; Aged, 80 and over ; Algorithms ; Child ; Codes ; Cohort Studies ; comorbidities ; Comorbidity ; Computational and Systems Biology ; Data Mining ; Denmark - epidemiology ; Diabetes ; Diabetes Complications - diagnosis ; Diabetes Complications - epidemiology ; Diabetes Complications - genetics ; Diabetes Complications - therapy ; Diabetes mellitus ; Diabetes Mellitus - diagnosis ; Diabetes Mellitus - epidemiology ; Diabetes Mellitus - genetics ; Diabetes Mellitus - therapy ; diabetes subtypes ; EHR ; Electronic Health Records ; Electronic medical records ; Epidemiology and Global Health ; Female ; genotyping ; Humans ; Insulin ; Male ; Medical records ; Middle Aged ; Patients ; Phenotypic variations ; Physiology ; Risk Factors ; Single-nucleotide polymorphism ; Terminology as Topic ; text mining ; Treatment Outcome ; Vocabulary ; Young Adult</subject><ispartof>eLife, 2019-12, Vol.8</ispartof><rights>2019, Kirk et al.</rights><rights>2019, Kirk et al. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>2019, Kirk et al 2019 Kirk et al</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</citedby><cites>FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</cites><orcidid>0000-0003-0316-5866</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2331586049/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2331586049?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25752,27923,27924,37011,37012,44589,53790,53792,74897</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/31818369$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Kirk, Isa Kristina</creatorcontrib><creatorcontrib>Simon, Christian</creatorcontrib><creatorcontrib>Banasik, Karina</creatorcontrib><creatorcontrib>Holm, Peter Christoffer</creatorcontrib><creatorcontrib>Haue, Amalie Dahl</creatorcontrib><creatorcontrib>Jensen, Peter Bjødstrup</creatorcontrib><creatorcontrib>Juhl Jensen, Lars</creatorcontrib><creatorcontrib>Rodríguez, Cristina Leal</creatorcontrib><creatorcontrib>Pedersen, Mette Krogh</creatorcontrib><creatorcontrib>Eriksson, Robert</creatorcontrib><creatorcontrib>Andersen, Henrik Ullits</creatorcontrib><creatorcontrib>Almdal, Thomas</creatorcontrib><creatorcontrib>Bork-Jensen, Jette</creatorcontrib><creatorcontrib>Grarup, Niels</creatorcontrib><creatorcontrib>Borch-Johnsen, Knut</creatorcontrib><creatorcontrib>Pedersen, Oluf</creatorcontrib><creatorcontrib>Pociot, Flemming</creatorcontrib><creatorcontrib>Hansen, Torben</creatorcontrib><creatorcontrib>Bergholdt, Regine</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Brunak, Søren</creatorcontrib><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><title>eLife</title><addtitle>Elife</addtitle><description>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</description><subject>Adolescent</subject><subject>Adult</subject><subject>Aged</subject><subject>Aged, 80 and over</subject><subject>Algorithms</subject><subject>Child</subject><subject>Codes</subject><subject>Cohort Studies</subject><subject>comorbidities</subject><subject>Comorbidity</subject><subject>Computational and Systems Biology</subject><subject>Data Mining</subject><subject>Denmark - epidemiology</subject><subject>Diabetes</subject><subject>Diabetes Complications - diagnosis</subject><subject>Diabetes Complications - epidemiology</subject><subject>Diabetes Complications - genetics</subject><subject>Diabetes Complications - therapy</subject><subject>Diabetes mellitus</subject><subject>Diabetes Mellitus - diagnosis</subject><subject>Diabetes Mellitus - epidemiology</subject><subject>Diabetes Mellitus - genetics</subject><subject>Diabetes Mellitus - therapy</subject><subject>diabetes subtypes</subject><subject>EHR</subject><subject>Electronic Health Records</subject><subject>Electronic medical records</subject><subject>Epidemiology and Global Health</subject><subject>Female</subject><subject>genotyping</subject><subject>Humans</subject><subject>Insulin</subject><subject>Male</subject><subject>Medical records</subject><subject>Middle Aged</subject><subject>Patients</subject><subject>Phenotypic variations</subject><subject>Physiology</subject><subject>Risk Factors</subject><subject>Single-nucleotide polymorphism</subject><subject>Terminology as Topic</subject><subject>text mining</subject><subject>Treatment Outcome</subject><subject>Vocabulary</subject><subject>Young Adult</subject><issn>2050-084X</issn><issn>2050-084X</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2019</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpdkt1rFDEUxQdRbGn75LsEfBF0a75mJ3kRpFRbWBBEwbeQj5vZbGeSNZkR9r83u1tL27zc5ObHyeHmNM0bgi-7tuWfYBU8XHIuOXnRnFLc4gUW_PfLR_uT5qKUDa6r40IQ-bo5YUQQwZbytLlbhXgXYo_6YWdhDBa5XcnQz4OeQoooROSCNjBBQVNCZTdupzSWj8imMWUTXJgC1KOODvUQYQq2guuc5n6Nrm9-IKcnjcYQ6xvnzSuvhwIX9_Ws-fX1-ufVzWL1_dvt1ZfVwvKunRZESLDcE8mk484LKhmVFDw1S-MYYY5Q6Q04ww2mntYx2Ap4qz0mrLWYnTW3R12X9EZtcxh13qmkgzo0Uu6VztXoAIowpplgRjrZcsvBdJp2WAuHjbGmI1Xr81FrO5sRnIU4ZT08EX16E8Na9emvWkrMKd0LvL8XyOnPDGVSYygWhkFHSHNRlFHGOynk3ve7Z-gmzTnWUVWKkVYsMZeV-nCkbE6lfpV_MEOw2mdCHTKhDpmo9NvH_h_Y_wlg_wATOLQI</recordid><startdate>20191210</startdate><enddate>20191210</enddate><creator>Kirk, Isa Kristina</creator><creator>Simon, Christian</creator><creator>Banasik, Karina</creator><creator>Holm, Peter Christoffer</creator><creator>Haue, Amalie Dahl</creator><creator>Jensen, Peter Bjødstrup</creator><creator>Juhl Jensen, Lars</creator><creator>Rodríguez, Cristina Leal</creator><creator>Pedersen, Mette Krogh</creator><creator>Eriksson, Robert</creator><creator>Andersen, Henrik Ullits</creator><creator>Almdal, Thomas</creator><creator>Bork-Jensen, Jette</creator><creator>Grarup, Niels</creator><creator>Borch-Johnsen, Knut</creator><creator>Pedersen, Oluf</creator><creator>Pociot, Flemming</creator><creator>Hansen, Torben</creator><creator>Bergholdt, Regine</creator><creator>Rossing, Peter</creator><creator>Brunak, Søren</creator><general>eLife Sciences Publications Ltd</general><general>eLife Sciences Publications, Ltd</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-0316-5866</orcidid></search><sort><creationdate>20191210</creationdate><title>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</title><author>Kirk, Isa Kristina ; Simon, Christian ; Banasik, Karina ; Holm, Peter Christoffer ; Haue, Amalie Dahl ; Jensen, Peter Bjødstrup ; Juhl Jensen, Lars ; Rodríguez, Cristina Leal ; Pedersen, Mette Krogh ; Eriksson, Robert ; Andersen, Henrik Ullits ; Almdal, Thomas ; Bork-Jensen, Jette ; Grarup, Niels ; Borch-Johnsen, Knut ; Pedersen, Oluf ; Pociot, Flemming ; Hansen, Torben ; Bergholdt, Regine ; Rossing, Peter ; Brunak, Søren</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2019</creationdate><topic>Adolescent</topic><topic>Adult</topic><topic>Aged</topic><topic>Aged, 80 and over</topic><topic>Algorithms</topic><topic>Child</topic><topic>Codes</topic><topic>Cohort Studies</topic><topic>comorbidities</topic><topic>Comorbidity</topic><topic>Computational and Systems Biology</topic><topic>Data Mining</topic><topic>Denmark - epidemiology</topic><topic>Diabetes</topic><topic>Diabetes Complications - diagnosis</topic><topic>Diabetes Complications - epidemiology</topic><topic>Diabetes Complications - genetics</topic><topic>Diabetes Complications - therapy</topic><topic>Diabetes mellitus</topic><topic>Diabetes Mellitus - diagnosis</topic><topic>Diabetes Mellitus - epidemiology</topic><topic>Diabetes Mellitus - genetics</topic><topic>Diabetes Mellitus - therapy</topic><topic>diabetes subtypes</topic><topic>EHR</topic><topic>Electronic Health Records</topic><topic>Electronic medical records</topic><topic>Epidemiology and Global Health</topic><topic>Female</topic><topic>genotyping</topic><topic>Humans</topic><topic>Insulin</topic><topic>Male</topic><topic>Medical records</topic><topic>Middle Aged</topic><topic>Patients</topic><topic>Phenotypic variations</topic><topic>Physiology</topic><topic>Risk Factors</topic><topic>Single-nucleotide polymorphism</topic><topic>Terminology as Topic</topic><topic>text mining</topic><topic>Treatment Outcome</topic><topic>Vocabulary</topic><topic>Young Adult</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Kirk, Isa Kristina</creatorcontrib><creatorcontrib>Simon, Christian</creatorcontrib><creatorcontrib>Banasik, Karina</creatorcontrib><creatorcontrib>Holm, Peter Christoffer</creatorcontrib><creatorcontrib>Haue, Amalie Dahl</creatorcontrib><creatorcontrib>Jensen, Peter Bjødstrup</creatorcontrib><creatorcontrib>Juhl Jensen, Lars</creatorcontrib><creatorcontrib>Rodríguez, Cristina Leal</creatorcontrib><creatorcontrib>Pedersen, Mette Krogh</creatorcontrib><creatorcontrib>Eriksson, Robert</creatorcontrib><creatorcontrib>Andersen, Henrik Ullits</creatorcontrib><creatorcontrib>Almdal, Thomas</creatorcontrib><creatorcontrib>Bork-Jensen, Jette</creatorcontrib><creatorcontrib>Grarup, Niels</creatorcontrib><creatorcontrib>Borch-Johnsen, Knut</creatorcontrib><creatorcontrib>Pedersen, Oluf</creatorcontrib><creatorcontrib>Pociot, Flemming</creatorcontrib><creatorcontrib>Hansen, Torben</creatorcontrib><creatorcontrib>Bergholdt, Regine</creatorcontrib><creatorcontrib>Rossing, Peter</creatorcontrib><creatorcontrib>Brunak, Søren</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Science Database</collection><collection>Biological Science Database</collection><collection>Publicly Available Content (ProQuest)</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DAOJ: Directory of Open Access Journals</collection><jtitle>eLife</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Kirk, Isa Kristina</au><au>Simon, Christian</au><au>Banasik, Karina</au><au>Holm, Peter Christoffer</au><au>Haue, Amalie Dahl</au><au>Jensen, Peter Bjødstrup</au><au>Juhl Jensen, Lars</au><au>Rodríguez, Cristina Leal</au><au>Pedersen, Mette Krogh</au><au>Eriksson, Robert</au><au>Andersen, Henrik Ullits</au><au>Almdal, Thomas</au><au>Bork-Jensen, Jette</au><au>Grarup, Niels</au><au>Borch-Johnsen, Knut</au><au>Pedersen, Oluf</au><au>Pociot, Flemming</au><au>Hansen, Torben</au><au>Bergholdt, Regine</au><au>Rossing, Peter</au><au>Brunak, Søren</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining</atitle><jtitle>eLife</jtitle><addtitle>Elife</addtitle><date>2019-12-10</date><risdate>2019</risdate><volume>8</volume><issn>2050-084X</issn><eissn>2050-084X</eissn><abstract>Diabetes is a diverse and complex disease, with considerable variation in phenotypic manifestation and severity. This variation hampers the study of etiological differences and reduces the statistical power of analyses of associations to genetics, treatment outcomes, and complications. We address these issues through deep, fine-grained phenotypic stratification of a diabetes cohort. Text mining the electronic health records of 14,017 patients, we matched two controlled vocabularies (ICD-10 and a custom vocabulary developed at the clinical center Steno Diabetes Center Copenhagen) to clinical narratives spanning a 19 year period. The two matched vocabularies comprise over 20,000 medical terms describing symptoms, other diagnoses, and lifestyle factors. The cohort is genetically homogeneous (Caucasian diabetes patients from Denmark) so the resulting stratification is not driven by ethnic differences, but rather by inherently dissimilar progression patterns and lifestyle related risk factors. Using unsupervised Markov clustering, we defined 71 clusters of at least 50 individuals within the diabetes spectrum. The clusters display both distinct and shared longitudinal glycemic dysregulation patterns, temporal co-occurrences of comorbidities, and associations to single nucleotide polymorphisms in or near genes relevant for diabetes comorbidities.</abstract><cop>England</cop><pub>eLife Sciences Publications Ltd</pub><pmid>31818369</pmid><doi>10.7554/eLife.44941</doi><orcidid>https://orcid.org/0000-0003-0316-5866</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2050-084X
ispartof eLife, 2019-12, Vol.8
issn 2050-084X
2050-084X
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_133a383b9d954c4eb7a270a8d0bbcb71
source Publicly Available Content (ProQuest); PubMed Central
subjects Adolescent
Adult
Aged
Aged, 80 and over
Algorithms
Child
Codes
Cohort Studies
comorbidities
Comorbidity
Computational and Systems Biology
Data Mining
Denmark - epidemiology
Diabetes
Diabetes Complications - diagnosis
Diabetes Complications - epidemiology
Diabetes Complications - genetics
Diabetes Complications - therapy
Diabetes mellitus
Diabetes Mellitus - diagnosis
Diabetes Mellitus - epidemiology
Diabetes Mellitus - genetics
Diabetes Mellitus - therapy
diabetes subtypes
EHR
Electronic Health Records
Electronic medical records
Epidemiology and Global Health
Female
genotyping
Humans
Insulin
Male
Medical records
Middle Aged
Patients
Phenotypic variations
Physiology
Risk Factors
Single-nucleotide polymorphism
Terminology as Topic
text mining
Treatment Outcome
Vocabulary
Young Adult
title Linking glycemic dysregulation in diabetes to symptoms, comorbidities, and genetics through EHR data mining
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-11T09%3A34%3A10IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Linking%20glycemic%20dysregulation%20in%20diabetes%20to%20symptoms,%20comorbidities,%20and%20genetics%20through%20EHR%20data%20mining&rft.jtitle=eLife&rft.au=Kirk,%20Isa%20Kristina&rft.date=2019-12-10&rft.volume=8&rft.issn=2050-084X&rft.eissn=2050-084X&rft_id=info:doi/10.7554/eLife.44941&rft_dat=%3Cproquest_doaj_%3E2323479890%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c475t-189ec4f1939d4df8293292ef2b6bd313d129fbedb4b02f2755c329fcaf0135c03%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2331586049&rft_id=info:pmid/31818369&rfr_iscdi=true