Loading…

Excellent Room-Temperature Thermoelectricity of 2D GeP3: Mexican-Hat-Shaped Band Dispersion and Ultralow Lattice Thermal Conductivity

Although some atomically thin 2D semiconductors have been found to possess good thermoelectric performance due to the quantum confinement effect, most of their behaviors occur at a higher temperature. Searching for promising thermoelectric materials at room temperature is meaningful and challenging....

Full description

Saved in:
Bibliographic Details
Published in:Molecules (Basel, Switzerland) Switzerland), 2021-10, Vol.26 (21), p.6376
Main Authors: Wang, Cong, Xu, Zhiyuan, Xu, Ke, Gao, Guoying
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Although some atomically thin 2D semiconductors have been found to possess good thermoelectric performance due to the quantum confinement effect, most of their behaviors occur at a higher temperature. Searching for promising thermoelectric materials at room temperature is meaningful and challenging. Inspired by the finding of moderate band gap and high carrier mobility in monolayer GeP3, we investigated the thermoelectric properties by using semi-classical Boltzmann transport theory and first-principles calculations. The results show that the room-temperature lattice thermal conductivity of monolayer GeP3 is only 0.43 Wm−1K−1 because of the low group velocity and the strong anharmonic phonon scattering resulting from the disordered phonon vibrations with out-of-plane and in-plane directions. Simultaneously, the Mexican-hat-shaped dispersion and the orbital degeneracy of the valence bands result in a large p-type power factor. Combining this superior power factor with the ultralow lattice thermal conductivity, a high p-type thermoelectric figure of merit of 3.33 is achieved with a moderate carrier concentration at 300 K. The present work highlights the potential applications of 2D GeP3 as an excellent room-temperature thermoelectric material.
ISSN:1420-3049
1420-3049
DOI:10.3390/molecules26216376