Loading…

Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2

The oxidative dehydrogenation of alkanes is a prospective method for olefins production. CO2-assisted propane dehydrogenation over metal oxide catalysts provides an opportunity to increase propylene production with collateral CO2 utilization. We prepared the chromia catalysts on various mesoporous a...

Full description

Saved in:
Bibliographic Details
Published in:Catalysts 2023-05, Vol.13 (5), p.882
Main Authors: Melnikov, Dmitry, Smirnova, Ekaterina, Reshetina, Marina, Novikov, Andrei, Wang, Hongqiang, Ivanov, Evgenii, Vinokurov, Vladimir, Glotov, Aleksandr
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83
cites cdi_FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83
container_end_page
container_issue 5
container_start_page 882
container_title Catalysts
container_volume 13
creator Melnikov, Dmitry
Smirnova, Ekaterina
Reshetina, Marina
Novikov, Andrei
Wang, Hongqiang
Ivanov, Evgenii
Vinokurov, Vladimir
Glotov, Aleksandr
description The oxidative dehydrogenation of alkanes is a prospective method for olefins production. CO2-assisted propane dehydrogenation over metal oxide catalysts provides an opportunity to increase propylene production with collateral CO2 utilization. We prepared the chromia catalysts on various mesoporous aluminosilicate supports, such as halloysite nanotubes, nanostructured core/shell composites of MCM-41/halloysite (halloysite nanotubes for the core; silica of MCM-41-type for the shell), and MCM-41@halloysite (silica of MCM-41-type for the core; halloysite nanotubes for the shell). The catalysts have been characterized by X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption of ammonia, transmission electron microscopy with energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The catalysts’ performance in carbon-dioxide-assisted propane dehydrogenation has been estimated in a fixed-bed reactor at atmospheric pressure. The most stable catalyst is Cr/halloysite, having the lowest activity and the largest pore diameter. The catalyst, Cr/MCM-41/HNT, shows the best catalytic performance: having the highest conversion (19–88%), selectivity (83–30%), and space–time yield (4.3–7.1 mol C3H6/kg catalyst/h) at the temperature range of 550–700 °C. The highest space–time yield could be related to the uniform distribution of the chromia particles over the large surface area and narrow pore size distribution of 2–4 nm provided by the MCM-41-type silica and transport channels of 12–15 nm from the halloysite nanotubes.
doi_str_mv 10.3390/catal13050882
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1374f5899ae143ac8977ecb1f472cb27</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1374f5899ae143ac8977ecb1f472cb27</doaj_id><sourcerecordid>2819403875</sourcerecordid><originalsourceid>FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83</originalsourceid><addsrcrecordid>eNpVkUtv1DAQxyMEElXpkbslzkv9yto5VuHRSoVFopyjiTPpeuVkgu0A-1n4snhZhGAu89B_fjOjqaqXgr9WquHXDjIEoXjNrZVPqgvJjdpopfXTf-Ln1VVKB16sEcqK-qL6-QETLRRpTazdR5r8OrH2xDqmnNgDTkuAjAOjmd1CCHRMPiP7CDPltcfEYB7YTVgnP1PywZc1kLUU8frzHkMo4bTQqSWxkSLb_fADZP8N2RvcH4dIjziXvMBpZJ8iLTAj--7znrU7-aJ6NkJIePXHX1Zf3r19aG8397v3d-3N_cYpw_PGcAMGBukGqUFuNWrdu0aLbblSW9f3Q4Pbfougaq5qYySMQ2OLWhhZG7Dqsro7cweCQ7dEP0E8dgS--12g-NhBzN4F7IQyeqxt0wAKrcDZxhh0vRi1ka6XprBenVlLpK8rptwdaI1zWb-TVjSaK2vqotqcVS5SShHHv1MF707v7P57p_oF3KaViA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2819403875</pqid></control><display><type>article</type><title>Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2</title><source>Publicly Available Content Database</source><creator>Melnikov, Dmitry ; Smirnova, Ekaterina ; Reshetina, Marina ; Novikov, Andrei ; Wang, Hongqiang ; Ivanov, Evgenii ; Vinokurov, Vladimir ; Glotov, Aleksandr</creator><creatorcontrib>Melnikov, Dmitry ; Smirnova, Ekaterina ; Reshetina, Marina ; Novikov, Andrei ; Wang, Hongqiang ; Ivanov, Evgenii ; Vinokurov, Vladimir ; Glotov, Aleksandr</creatorcontrib><description>The oxidative dehydrogenation of alkanes is a prospective method for olefins production. CO2-assisted propane dehydrogenation over metal oxide catalysts provides an opportunity to increase propylene production with collateral CO2 utilization. We prepared the chromia catalysts on various mesoporous aluminosilicate supports, such as halloysite nanotubes, nanostructured core/shell composites of MCM-41/halloysite (halloysite nanotubes for the core; silica of MCM-41-type for the shell), and MCM-41@halloysite (silica of MCM-41-type for the core; halloysite nanotubes for the shell). The catalysts have been characterized by X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption of ammonia, transmission electron microscopy with energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The catalysts’ performance in carbon-dioxide-assisted propane dehydrogenation has been estimated in a fixed-bed reactor at atmospheric pressure. The most stable catalyst is Cr/halloysite, having the lowest activity and the largest pore diameter. The catalyst, Cr/MCM-41/HNT, shows the best catalytic performance: having the highest conversion (19–88%), selectivity (83–30%), and space–time yield (4.3–7.1 mol C3H6/kg catalyst/h) at the temperature range of 550–700 °C. The highest space–time yield could be related to the uniform distribution of the chromia particles over the large surface area and narrow pore size distribution of 2–4 nm provided by the MCM-41-type silica and transport channels of 12–15 nm from the halloysite nanotubes.</description><identifier>ISSN: 2073-4344</identifier><identifier>EISSN: 2073-4344</identifier><identifier>DOI: 10.3390/catal13050882</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Alkanes ; Alkenes ; aluminosilicate ; Aluminosilicates ; Aluminum silicates ; Ammonia ; Carbon dioxide ; Catalysts ; Catalytic converters ; Catalytic cracking ; Chemical reactions ; Chromium oxides ; Composite materials ; Dehydrogenation ; Hydrocarbons ; Investigations ; Low temperature ; Mechanical properties ; mesoporous materials ; mesoporous silica ; Metal oxides ; Nanotubes ; Natural gas ; oxidative dehydrogenation ; Pore size distribution ; Propane ; Propylene ; Silica ; Silicon dioxide ; Thermogravimetric analysis ; X ray fluorescence analysis ; Zeolites</subject><ispartof>Catalysts, 2023-05, Vol.13 (5), p.882</ispartof><rights>2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83</citedby><cites>FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83</cites><orcidid>0000-0002-0887-6678 ; 0000-0002-0570-6577 ; 0000-0001-6529-2321 ; 0000-0002-2877-0395</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2819403875/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2819403875?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Melnikov, Dmitry</creatorcontrib><creatorcontrib>Smirnova, Ekaterina</creatorcontrib><creatorcontrib>Reshetina, Marina</creatorcontrib><creatorcontrib>Novikov, Andrei</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Ivanov, Evgenii</creatorcontrib><creatorcontrib>Vinokurov, Vladimir</creatorcontrib><creatorcontrib>Glotov, Aleksandr</creatorcontrib><title>Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2</title><title>Catalysts</title><description>The oxidative dehydrogenation of alkanes is a prospective method for olefins production. CO2-assisted propane dehydrogenation over metal oxide catalysts provides an opportunity to increase propylene production with collateral CO2 utilization. We prepared the chromia catalysts on various mesoporous aluminosilicate supports, such as halloysite nanotubes, nanostructured core/shell composites of MCM-41/halloysite (halloysite nanotubes for the core; silica of MCM-41-type for the shell), and MCM-41@halloysite (silica of MCM-41-type for the core; halloysite nanotubes for the shell). The catalysts have been characterized by X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption of ammonia, transmission electron microscopy with energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The catalysts’ performance in carbon-dioxide-assisted propane dehydrogenation has been estimated in a fixed-bed reactor at atmospheric pressure. The most stable catalyst is Cr/halloysite, having the lowest activity and the largest pore diameter. The catalyst, Cr/MCM-41/HNT, shows the best catalytic performance: having the highest conversion (19–88%), selectivity (83–30%), and space–time yield (4.3–7.1 mol C3H6/kg catalyst/h) at the temperature range of 550–700 °C. The highest space–time yield could be related to the uniform distribution of the chromia particles over the large surface area and narrow pore size distribution of 2–4 nm provided by the MCM-41-type silica and transport channels of 12–15 nm from the halloysite nanotubes.</description><subject>Alkanes</subject><subject>Alkenes</subject><subject>aluminosilicate</subject><subject>Aluminosilicates</subject><subject>Aluminum silicates</subject><subject>Ammonia</subject><subject>Carbon dioxide</subject><subject>Catalysts</subject><subject>Catalytic converters</subject><subject>Catalytic cracking</subject><subject>Chemical reactions</subject><subject>Chromium oxides</subject><subject>Composite materials</subject><subject>Dehydrogenation</subject><subject>Hydrocarbons</subject><subject>Investigations</subject><subject>Low temperature</subject><subject>Mechanical properties</subject><subject>mesoporous materials</subject><subject>mesoporous silica</subject><subject>Metal oxides</subject><subject>Nanotubes</subject><subject>Natural gas</subject><subject>oxidative dehydrogenation</subject><subject>Pore size distribution</subject><subject>Propane</subject><subject>Propylene</subject><subject>Silica</subject><subject>Silicon dioxide</subject><subject>Thermogravimetric analysis</subject><subject>X ray fluorescence analysis</subject><subject>Zeolites</subject><issn>2073-4344</issn><issn>2073-4344</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2023</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpVkUtv1DAQxyMEElXpkbslzkv9yto5VuHRSoVFopyjiTPpeuVkgu0A-1n4snhZhGAu89B_fjOjqaqXgr9WquHXDjIEoXjNrZVPqgvJjdpopfXTf-Ln1VVKB16sEcqK-qL6-QETLRRpTazdR5r8OrH2xDqmnNgDTkuAjAOjmd1CCHRMPiP7CDPltcfEYB7YTVgnP1PywZc1kLUU8frzHkMo4bTQqSWxkSLb_fADZP8N2RvcH4dIjziXvMBpZJ8iLTAj--7znrU7-aJ6NkJIePXHX1Zf3r19aG8397v3d-3N_cYpw_PGcAMGBukGqUFuNWrdu0aLbblSW9f3Q4Pbfougaq5qYySMQ2OLWhhZG7Dqsro7cweCQ7dEP0E8dgS--12g-NhBzN4F7IQyeqxt0wAKrcDZxhh0vRi1ka6XprBenVlLpK8rptwdaI1zWb-TVjSaK2vqotqcVS5SShHHv1MF707v7P57p_oF3KaViA</recordid><startdate>20230513</startdate><enddate>20230513</enddate><creator>Melnikov, Dmitry</creator><creator>Smirnova, Ekaterina</creator><creator>Reshetina, Marina</creator><creator>Novikov, Andrei</creator><creator>Wang, Hongqiang</creator><creator>Ivanov, Evgenii</creator><creator>Vinokurov, Vladimir</creator><creator>Glotov, Aleksandr</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>7SR</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-0887-6678</orcidid><orcidid>https://orcid.org/0000-0002-0570-6577</orcidid><orcidid>https://orcid.org/0000-0001-6529-2321</orcidid><orcidid>https://orcid.org/0000-0002-2877-0395</orcidid></search><sort><creationdate>20230513</creationdate><title>Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2</title><author>Melnikov, Dmitry ; Smirnova, Ekaterina ; Reshetina, Marina ; Novikov, Andrei ; Wang, Hongqiang ; Ivanov, Evgenii ; Vinokurov, Vladimir ; Glotov, Aleksandr</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2023</creationdate><topic>Alkanes</topic><topic>Alkenes</topic><topic>aluminosilicate</topic><topic>Aluminosilicates</topic><topic>Aluminum silicates</topic><topic>Ammonia</topic><topic>Carbon dioxide</topic><topic>Catalysts</topic><topic>Catalytic converters</topic><topic>Catalytic cracking</topic><topic>Chemical reactions</topic><topic>Chromium oxides</topic><topic>Composite materials</topic><topic>Dehydrogenation</topic><topic>Hydrocarbons</topic><topic>Investigations</topic><topic>Low temperature</topic><topic>Mechanical properties</topic><topic>mesoporous materials</topic><topic>mesoporous silica</topic><topic>Metal oxides</topic><topic>Nanotubes</topic><topic>Natural gas</topic><topic>oxidative dehydrogenation</topic><topic>Pore size distribution</topic><topic>Propane</topic><topic>Propylene</topic><topic>Silica</topic><topic>Silicon dioxide</topic><topic>Thermogravimetric analysis</topic><topic>X ray fluorescence analysis</topic><topic>Zeolites</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Melnikov, Dmitry</creatorcontrib><creatorcontrib>Smirnova, Ekaterina</creatorcontrib><creatorcontrib>Reshetina, Marina</creatorcontrib><creatorcontrib>Novikov, Andrei</creatorcontrib><creatorcontrib>Wang, Hongqiang</creatorcontrib><creatorcontrib>Ivanov, Evgenii</creatorcontrib><creatorcontrib>Vinokurov, Vladimir</creatorcontrib><creatorcontrib>Glotov, Aleksandr</creatorcontrib><collection>CrossRef</collection><collection>Engineered Materials Abstracts</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Materials Research Database</collection><collection>ProQuest Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>Directory of Open Access Journals</collection><jtitle>Catalysts</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Melnikov, Dmitry</au><au>Smirnova, Ekaterina</au><au>Reshetina, Marina</au><au>Novikov, Andrei</au><au>Wang, Hongqiang</au><au>Ivanov, Evgenii</au><au>Vinokurov, Vladimir</au><au>Glotov, Aleksandr</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2</atitle><jtitle>Catalysts</jtitle><date>2023-05-13</date><risdate>2023</risdate><volume>13</volume><issue>5</issue><spage>882</spage><pages>882-</pages><issn>2073-4344</issn><eissn>2073-4344</eissn><abstract>The oxidative dehydrogenation of alkanes is a prospective method for olefins production. CO2-assisted propane dehydrogenation over metal oxide catalysts provides an opportunity to increase propylene production with collateral CO2 utilization. We prepared the chromia catalysts on various mesoporous aluminosilicate supports, such as halloysite nanotubes, nanostructured core/shell composites of MCM-41/halloysite (halloysite nanotubes for the core; silica of MCM-41-type for the shell), and MCM-41@halloysite (silica of MCM-41-type for the core; halloysite nanotubes for the shell). The catalysts have been characterized by X-ray fluorescence analysis, low-temperature nitrogen adsorption, X-ray diffraction, temperature-programmed reduction, temperature-programmed desorption of ammonia, transmission electron microscopy with energy-dispersive X-ray spectroscopy, and thermogravimetric analysis. The catalysts’ performance in carbon-dioxide-assisted propane dehydrogenation has been estimated in a fixed-bed reactor at atmospheric pressure. The most stable catalyst is Cr/halloysite, having the lowest activity and the largest pore diameter. The catalyst, Cr/MCM-41/HNT, shows the best catalytic performance: having the highest conversion (19–88%), selectivity (83–30%), and space–time yield (4.3–7.1 mol C3H6/kg catalyst/h) at the temperature range of 550–700 °C. The highest space–time yield could be related to the uniform distribution of the chromia particles over the large surface area and narrow pore size distribution of 2–4 nm provided by the MCM-41-type silica and transport channels of 12–15 nm from the halloysite nanotubes.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/catal13050882</doi><orcidid>https://orcid.org/0000-0002-0887-6678</orcidid><orcidid>https://orcid.org/0000-0002-0570-6577</orcidid><orcidid>https://orcid.org/0000-0001-6529-2321</orcidid><orcidid>https://orcid.org/0000-0002-2877-0395</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2073-4344
ispartof Catalysts, 2023-05, Vol.13 (5), p.882
issn 2073-4344
2073-4344
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1374f5899ae143ac8977ecb1f472cb27
source Publicly Available Content Database
subjects Alkanes
Alkenes
aluminosilicate
Aluminosilicates
Aluminum silicates
Ammonia
Carbon dioxide
Catalysts
Catalytic converters
Catalytic cracking
Chemical reactions
Chromium oxides
Composite materials
Dehydrogenation
Hydrocarbons
Investigations
Low temperature
Mechanical properties
mesoporous materials
mesoporous silica
Metal oxides
Nanotubes
Natural gas
oxidative dehydrogenation
Pore size distribution
Propane
Propylene
Silica
Silicon dioxide
Thermogravimetric analysis
X ray fluorescence analysis
Zeolites
title Mesoporous Chromium Catalysts Templated on Halloysite Nanotubes and Aluminosilicate Core/Shell Composites for Oxidative Dehydrogenation of Propane with CO2
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T15%3A51%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Mesoporous%20Chromium%20Catalysts%20Templated%20on%20Halloysite%20Nanotubes%20and%20Aluminosilicate%20Core/Shell%20Composites%20for%20Oxidative%20Dehydrogenation%20of%20Propane%20with%20CO2&rft.jtitle=Catalysts&rft.au=Melnikov,%20Dmitry&rft.date=2023-05-13&rft.volume=13&rft.issue=5&rft.spage=882&rft.pages=882-&rft.issn=2073-4344&rft.eissn=2073-4344&rft_id=info:doi/10.3390/catal13050882&rft_dat=%3Cproquest_doaj_%3E2819403875%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c370t-707a7ad2cd24a264e44bc941600948cbbd9e6b6ea35035772afd98cd217257a83%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2819403875&rft_id=info:pmid/&rfr_iscdi=true