Loading…

Evaluation of a Spinosad Controlled-Release Formulation Based on Chitosan Carrier: Insecticidal Activity against Plutella xylostella (L.) Larvae and Dissipation Behavior in Soil

Controlled-release pesticide formulations using natural polymers as carriers are highly desirable owing to their good biocompatibility, biodegradability, and improved pesticide utilization. In this study, the application potential of our previously prepared spinosad/chitosan controlled-release suspe...

Full description

Saved in:
Bibliographic Details
Published in:ACS omega 2021-11, Vol.6 (45), p.30762-30768
Main Authors: Wang, Juan, Wang, Meng, Li, Guo-Bin, Zhang, Bao-Hua, Lü, Haitao, Luo, Lan, Kong, Xiang-Ping
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Controlled-release pesticide formulations using natural polymers as carriers are highly desirable owing to their good biocompatibility, biodegradability, and improved pesticide utilization. In this study, the application potential of our previously prepared spinosad/chitosan controlled-release suspension (SCCS) was evaluated through both toxicity and dissipation tests. A comparison with the spinosad suspension concentrate and the commercial spinosad emulsion in water showed that the insecticidal activity of SCCS against Plutella xylostella larvae displayed the best quick-acting performance as well as long-term efficacy of more than 20 days. The 48 h LC50 for a 20-day efficacy was calculated to be 29.36 mg/L. The dissipation behavior of spinosad in the spinosad/chitosan microparticles in soil was found to follow the first-order kinetics, with a relatively shorter half-life (2.1 days) than that observed for the unformulated spinosad (3.1 days). This work showed the positive effect of chitosan on spinosad in improving insecticidal activity and reducing environmental risks in soil, which provided useful information on the application potential of pesticide–carrier systems based on natural polymer materials in crop protection and food safety.
ISSN:2470-1343
2470-1343
DOI:10.1021/acsomega.1c04853