Loading…

A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling

Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and...

Full description

Saved in:
Bibliographic Details
Published in:Rice (New York, N.Y.) N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72
Main Authors: Zhou, Chao, Liu, Xiaoyun, Li, Xinglei, Zhou, Hanlin, Wang, Sijia, Yuan, Zhu, Zhang, Yonghong, Li, Sanhe, You, Aiqing, Zhou, Lei, He, Zhengquan
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943
cites cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943
container_end_page 72
container_issue 1
container_start_page 72
container_title Rice (New York, N.Y.)
container_volume 14
creator Zhou, Chao
Liu, Xiaoyun
Li, Xinglei
Zhou, Hanlin
Wang, Sijia
Yuan, Zhu
Zhang, Yonghong
Li, Sanhe
You, Aiqing
Zhou, Lei
He, Zhengquan
description Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.
doi_str_mv 10.1186/s12284-021-00515-7
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609</doaj_id><sourcerecordid>2558091907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEoqXwBThZ4sIl4LHjfxekaruUSkWgAmfLsZ1sVkm82EnFXvjsOE1VVA6cPPa89xtr9IriNeB3AJK_T0CIrEpMoMSYASvFk-IUFFWlrCh9-lATdlK8SGmPMaeEqefFCa1oJUCq0-L3Obr0Yxg8ughz3Xdji7a3fpzQjU87c_AJ3XTWo88hHnahD-0RmdGhrzG42U4J1cfccnNvpsW52cUwLCX61rWjmeaY_Ys-j_Bo--uQ76kL4-JvumXYy-JZY_rkX92fZ8WPj9vvm0_l9ZfLq835dWkZiKl0TcUFpowz4ix20lEQjsjGVqThnkmmJLYOc9wIELjxtaRCSQ9N7cEqVdGz4mrlumD2-hC7wcSjDqbTdw8httrEqbO910AtZChtoIKqtrzmHJiphTPc1hyrzPqwsg5zPXhn87ai6R9BH3fGbqfbcKslpQokzoC394AYfs4-TXrokvV9b0Yf5qQJYxIrUFhk6Zt_pPswxzGvalEJBRUBmlVkVdkYUoq-efgMYL1ERa9R0Tkq-i4qekHT1ZSyeGx9_Iv-j-sPPCHBJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557914213</pqid></control><display><type>article</type><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Springer Nature</source><creator>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</creator><creatorcontrib>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</creatorcontrib><description>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</description><identifier>ISSN: 1939-8425</identifier><identifier>EISSN: 1939-8433</identifier><identifier>EISSN: 1934-8037</identifier><identifier>DOI: 10.1186/s12284-021-00515-7</identifier><identifier>PMID: 34347189</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accessibility ; Accessible chromatin regions ; Agriculture ; Autopolyploid ; Autotetraploid ; Biomedical and Life Sciences ; Chromatin ; Condensates ; Crops ; Crosstalk ; Epigenetic marks ; Epigenetics ; Euchromatin ; Gene expression ; Gene sequencing ; Genetic diversity ; Genetic improvement ; Genomes ; Immunoprecipitation ; Life Sciences ; Metabolites ; Morphology ; Original ; Original Article ; Perturbation ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Polyploidy ; Reproduction (copying) ; Rice ; Signatures ; Transcription ; Transcriptional regulation ; Transposase</subject><ispartof>Rice (New York, N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</citedby><cites>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</cites><orcidid>0000-0002-6205-2573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2557914213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2557914213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Li, Xinglei</creatorcontrib><creatorcontrib>Zhou, Hanlin</creatorcontrib><creatorcontrib>Wang, Sijia</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Zhang, Yonghong</creatorcontrib><creatorcontrib>Li, Sanhe</creatorcontrib><creatorcontrib>You, Aiqing</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>He, Zhengquan</creatorcontrib><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><title>Rice (New York, N.Y.)</title><addtitle>Rice</addtitle><description>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</description><subject>Accessibility</subject><subject>Accessible chromatin regions</subject><subject>Agriculture</subject><subject>Autopolyploid</subject><subject>Autotetraploid</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin</subject><subject>Condensates</subject><subject>Crops</subject><subject>Crosstalk</subject><subject>Epigenetic marks</subject><subject>Epigenetics</subject><subject>Euchromatin</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genomes</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Perturbation</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Polyploidy</subject><subject>Reproduction (copying)</subject><subject>Rice</subject><subject>Signatures</subject><subject>Transcription</subject><subject>Transcriptional regulation</subject><subject>Transposase</subject><issn>1939-8425</issn><issn>1939-8433</issn><issn>1934-8037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEoqXwBThZ4sIl4LHjfxekaruUSkWgAmfLsZ1sVkm82EnFXvjsOE1VVA6cPPa89xtr9IriNeB3AJK_T0CIrEpMoMSYASvFk-IUFFWlrCh9-lATdlK8SGmPMaeEqefFCa1oJUCq0-L3Obr0Yxg8ughz3Xdji7a3fpzQjU87c_AJ3XTWo88hHnahD-0RmdGhrzG42U4J1cfccnNvpsW52cUwLCX61rWjmeaY_Ys-j_Bo--uQ76kL4-JvumXYy-JZY_rkX92fZ8WPj9vvm0_l9ZfLq835dWkZiKl0TcUFpowz4ix20lEQjsjGVqThnkmmJLYOc9wIELjxtaRCSQ9N7cEqVdGz4mrlumD2-hC7wcSjDqbTdw8httrEqbO910AtZChtoIKqtrzmHJiphTPc1hyrzPqwsg5zPXhn87ai6R9BH3fGbqfbcKslpQokzoC394AYfs4-TXrokvV9b0Yf5qQJYxIrUFhk6Zt_pPswxzGvalEJBRUBmlVkVdkYUoq-efgMYL1ERa9R0Tkq-i4qekHT1ZSyeGx9_Iv-j-sPPCHBJg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhou, Chao</creator><creator>Liu, Xiaoyun</creator><creator>Li, Xinglei</creator><creator>Zhou, Hanlin</creator><creator>Wang, Sijia</creator><creator>Yuan, Zhu</creator><creator>Zhang, Yonghong</creator><creator>Li, Sanhe</creator><creator>You, Aiqing</creator><creator>Zhou, Lei</creator><creator>He, Zhengquan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6205-2573</orcidid></search><sort><creationdate>20211201</creationdate><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><author>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Accessible chromatin regions</topic><topic>Agriculture</topic><topic>Autopolyploid</topic><topic>Autotetraploid</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin</topic><topic>Condensates</topic><topic>Crops</topic><topic>Crosstalk</topic><topic>Epigenetic marks</topic><topic>Epigenetics</topic><topic>Euchromatin</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genomes</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Perturbation</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Polyploidy</topic><topic>Reproduction (copying)</topic><topic>Rice</topic><topic>Signatures</topic><topic>Transcription</topic><topic>Transcriptional regulation</topic><topic>Transposase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Li, Xinglei</creatorcontrib><creatorcontrib>Zhou, Hanlin</creatorcontrib><creatorcontrib>Wang, Sijia</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Zhang, Yonghong</creatorcontrib><creatorcontrib>Li, Sanhe</creatorcontrib><creatorcontrib>You, Aiqing</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>He, Zhengquan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural &amp; Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agriculture Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Rice (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chao</au><au>Liu, Xiaoyun</au><au>Li, Xinglei</au><au>Zhou, Hanlin</au><au>Wang, Sijia</au><au>Yuan, Zhu</au><au>Zhang, Yonghong</au><au>Li, Sanhe</au><au>You, Aiqing</au><au>Zhou, Lei</au><au>He, Zhengquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</atitle><jtitle>Rice (New York, N.Y.)</jtitle><stitle>Rice</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>72</spage><epage>72</epage><pages>72-72</pages><artnum>72</artnum><issn>1939-8425</issn><eissn>1939-8433</eissn><eissn>1934-8037</eissn><abstract>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor, Oryza sativa ssp. indica 93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34347189</pmid><doi>10.1186/s12284-021-00515-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6205-2573</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1939-8425
ispartof Rice (New York, N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72
issn 1939-8425
1939-8433
1934-8037
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609
source PubMed (Medline); Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; Springer Nature
subjects Accessibility
Accessible chromatin regions
Agriculture
Autopolyploid
Autotetraploid
Biomedical and Life Sciences
Chromatin
Condensates
Crops
Crosstalk
Epigenetic marks
Epigenetics
Euchromatin
Gene expression
Gene sequencing
Genetic diversity
Genetic improvement
Genomes
Immunoprecipitation
Life Sciences
Metabolites
Morphology
Original
Original Article
Perturbation
Plant Breeding/Biotechnology
Plant Ecology
Plant Genetics and Genomics
Plant Sciences
Polyploidy
Reproduction (copying)
Rice
Signatures
Transcription
Transcriptional regulation
Transposase
title A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genome%20Doubling%20Event%20Reshapes%20Rice%20Morphology%20and%20Products%20by%20Modulating%20Chromatin%20Signatures%20and%20Gene%20Expression%20Profiling&rft.jtitle=Rice%20(New%20York,%20N.Y.)&rft.au=Zhou,%20Chao&rft.date=2021-12-01&rft.volume=14&rft.issue=1&rft.spage=72&rft.epage=72&rft.pages=72-72&rft.artnum=72&rft.issn=1939-8425&rft.eissn=1939-8433&rft_id=info:doi/10.1186/s12284-021-00515-7&rft_dat=%3Cproquest_doaj_%3E2558091907%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557914213&rft_id=info:pmid/34347189&rfr_iscdi=true