Loading…
A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling
Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and...
Saved in:
Published in: | Rice (New York, N.Y.) N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72 |
---|---|
Main Authors: | , , , , , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943 |
---|---|
cites | cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943 |
container_end_page | 72 |
container_issue | 1 |
container_start_page | 72 |
container_title | Rice (New York, N.Y.) |
container_volume | 14 |
creator | Zhou, Chao Liu, Xiaoyun Li, Xinglei Zhou, Hanlin Wang, Sijia Yuan, Zhu Zhang, Yonghong Li, Sanhe You, Aiqing Zhou, Lei He, Zhengquan |
description | Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor,
Oryza sativa
ssp.
indica
93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement. |
doi_str_mv | 10.1186/s12284-021-00515-7 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609</doaj_id><sourcerecordid>2558091907</sourcerecordid><originalsourceid>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</originalsourceid><addsrcrecordid>eNp9kk9v1DAQxSMEoqXwBThZ4sIl4LHjfxekaruUSkWgAmfLsZ1sVkm82EnFXvjsOE1VVA6cPPa89xtr9IriNeB3AJK_T0CIrEpMoMSYASvFk-IUFFWlrCh9-lATdlK8SGmPMaeEqefFCa1oJUCq0-L3Obr0Yxg8ughz3Xdji7a3fpzQjU87c_AJ3XTWo88hHnahD-0RmdGhrzG42U4J1cfccnNvpsW52cUwLCX61rWjmeaY_Ys-j_Bo--uQ76kL4-JvumXYy-JZY_rkX92fZ8WPj9vvm0_l9ZfLq835dWkZiKl0TcUFpowz4ix20lEQjsjGVqThnkmmJLYOc9wIELjxtaRCSQ9N7cEqVdGz4mrlumD2-hC7wcSjDqbTdw8httrEqbO910AtZChtoIKqtrzmHJiphTPc1hyrzPqwsg5zPXhn87ai6R9BH3fGbqfbcKslpQokzoC394AYfs4-TXrokvV9b0Yf5qQJYxIrUFhk6Zt_pPswxzGvalEJBRUBmlVkVdkYUoq-efgMYL1ERa9R0Tkq-i4qekHT1ZSyeGx9_Iv-j-sPPCHBJg</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2557914213</pqid></control><display><type>article</type><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><source>PubMed (Medline)</source><source>Publicly Available Content Database</source><source>Springer Nature - SpringerLink Journals - Fully Open Access</source><source>Springer Nature</source><creator>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</creator><creatorcontrib>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</creatorcontrib><description>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor,
Oryza sativa
ssp.
indica
93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</description><identifier>ISSN: 1939-8425</identifier><identifier>EISSN: 1939-8433</identifier><identifier>EISSN: 1934-8037</identifier><identifier>DOI: 10.1186/s12284-021-00515-7</identifier><identifier>PMID: 34347189</identifier><language>eng</language><publisher>New York: Springer US</publisher><subject>Accessibility ; Accessible chromatin regions ; Agriculture ; Autopolyploid ; Autotetraploid ; Biomedical and Life Sciences ; Chromatin ; Condensates ; Crops ; Crosstalk ; Epigenetic marks ; Epigenetics ; Euchromatin ; Gene expression ; Gene sequencing ; Genetic diversity ; Genetic improvement ; Genomes ; Immunoprecipitation ; Life Sciences ; Metabolites ; Morphology ; Original ; Original Article ; Perturbation ; Plant Breeding/Biotechnology ; Plant Ecology ; Plant Genetics and Genomics ; Plant Sciences ; Polyploidy ; Reproduction (copying) ; Rice ; Signatures ; Transcription ; Transcriptional regulation ; Transposase</subject><ispartof>Rice (New York, N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72</ispartof><rights>The Author(s) 2021</rights><rights>The Author(s) 2021. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</citedby><cites>FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</cites><orcidid>0000-0002-6205-2573</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2557914213/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2557914213?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,74998</link.rule.ids></links><search><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Li, Xinglei</creatorcontrib><creatorcontrib>Zhou, Hanlin</creatorcontrib><creatorcontrib>Wang, Sijia</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Zhang, Yonghong</creatorcontrib><creatorcontrib>Li, Sanhe</creatorcontrib><creatorcontrib>You, Aiqing</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>He, Zhengquan</creatorcontrib><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><title>Rice (New York, N.Y.)</title><addtitle>Rice</addtitle><description>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor,
Oryza sativa
ssp.
indica
93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</description><subject>Accessibility</subject><subject>Accessible chromatin regions</subject><subject>Agriculture</subject><subject>Autopolyploid</subject><subject>Autotetraploid</subject><subject>Biomedical and Life Sciences</subject><subject>Chromatin</subject><subject>Condensates</subject><subject>Crops</subject><subject>Crosstalk</subject><subject>Epigenetic marks</subject><subject>Epigenetics</subject><subject>Euchromatin</subject><subject>Gene expression</subject><subject>Gene sequencing</subject><subject>Genetic diversity</subject><subject>Genetic improvement</subject><subject>Genomes</subject><subject>Immunoprecipitation</subject><subject>Life Sciences</subject><subject>Metabolites</subject><subject>Morphology</subject><subject>Original</subject><subject>Original Article</subject><subject>Perturbation</subject><subject>Plant Breeding/Biotechnology</subject><subject>Plant Ecology</subject><subject>Plant Genetics and Genomics</subject><subject>Plant Sciences</subject><subject>Polyploidy</subject><subject>Reproduction (copying)</subject><subject>Rice</subject><subject>Signatures</subject><subject>Transcription</subject><subject>Transcriptional regulation</subject><subject>Transposase</subject><issn>1939-8425</issn><issn>1939-8433</issn><issn>1934-8037</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk9v1DAQxSMEoqXwBThZ4sIl4LHjfxekaruUSkWgAmfLsZ1sVkm82EnFXvjsOE1VVA6cPPa89xtr9IriNeB3AJK_T0CIrEpMoMSYASvFk-IUFFWlrCh9-lATdlK8SGmPMaeEqefFCa1oJUCq0-L3Obr0Yxg8ughz3Xdji7a3fpzQjU87c_AJ3XTWo88hHnahD-0RmdGhrzG42U4J1cfccnNvpsW52cUwLCX61rWjmeaY_Ys-j_Bo--uQ76kL4-JvumXYy-JZY_rkX92fZ8WPj9vvm0_l9ZfLq835dWkZiKl0TcUFpowz4ix20lEQjsjGVqThnkmmJLYOc9wIELjxtaRCSQ9N7cEqVdGz4mrlumD2-hC7wcSjDqbTdw8httrEqbO910AtZChtoIKqtrzmHJiphTPc1hyrzPqwsg5zPXhn87ai6R9BH3fGbqfbcKslpQokzoC394AYfs4-TXrokvV9b0Yf5qQJYxIrUFhk6Zt_pPswxzGvalEJBRUBmlVkVdkYUoq-efgMYL1ERa9R0Tkq-i4qekHT1ZSyeGx9_Iv-j-sPPCHBJg</recordid><startdate>20211201</startdate><enddate>20211201</enddate><creator>Zhou, Chao</creator><creator>Liu, Xiaoyun</creator><creator>Li, Xinglei</creator><creator>Zhou, Hanlin</creator><creator>Wang, Sijia</creator><creator>Yuan, Zhu</creator><creator>Zhang, Yonghong</creator><creator>Li, Sanhe</creator><creator>You, Aiqing</creator><creator>Zhou, Lei</creator><creator>He, Zhengquan</creator><general>Springer US</general><general>Springer Nature B.V</general><general>SpringerOpen</general><scope>C6C</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X2</scope><scope>7XB</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AEUYN</scope><scope>AFKRA</scope><scope>ATCPS</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>M0K</scope><scope>M2P</scope><scope>PATMY</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PYCSY</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0002-6205-2573</orcidid></search><sort><creationdate>20211201</creationdate><title>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</title><author>Zhou, Chao ; Liu, Xiaoyun ; Li, Xinglei ; Zhou, Hanlin ; Wang, Sijia ; Yuan, Zhu ; Zhang, Yonghong ; Li, Sanhe ; You, Aiqing ; Zhou, Lei ; He, Zhengquan</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Accessibility</topic><topic>Accessible chromatin regions</topic><topic>Agriculture</topic><topic>Autopolyploid</topic><topic>Autotetraploid</topic><topic>Biomedical and Life Sciences</topic><topic>Chromatin</topic><topic>Condensates</topic><topic>Crops</topic><topic>Crosstalk</topic><topic>Epigenetic marks</topic><topic>Epigenetics</topic><topic>Euchromatin</topic><topic>Gene expression</topic><topic>Gene sequencing</topic><topic>Genetic diversity</topic><topic>Genetic improvement</topic><topic>Genomes</topic><topic>Immunoprecipitation</topic><topic>Life Sciences</topic><topic>Metabolites</topic><topic>Morphology</topic><topic>Original</topic><topic>Original Article</topic><topic>Perturbation</topic><topic>Plant Breeding/Biotechnology</topic><topic>Plant Ecology</topic><topic>Plant Genetics and Genomics</topic><topic>Plant Sciences</topic><topic>Polyploidy</topic><topic>Reproduction (copying)</topic><topic>Rice</topic><topic>Signatures</topic><topic>Transcription</topic><topic>Transcriptional regulation</topic><topic>Transposase</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Zhou, Chao</creatorcontrib><creatorcontrib>Liu, Xiaoyun</creatorcontrib><creatorcontrib>Li, Xinglei</creatorcontrib><creatorcontrib>Zhou, Hanlin</creatorcontrib><creatorcontrib>Wang, Sijia</creatorcontrib><creatorcontrib>Yuan, Zhu</creatorcontrib><creatorcontrib>Zhang, Yonghong</creatorcontrib><creatorcontrib>Li, Sanhe</creatorcontrib><creatorcontrib>You, Aiqing</creatorcontrib><creatorcontrib>Zhou, Lei</creatorcontrib><creatorcontrib>He, Zhengquan</creatorcontrib><collection>SpringerOpen</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Agricultural Science Collection</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest One Sustainability</collection><collection>ProQuest Central</collection><collection>Agricultural & Environmental Science Collection</collection><collection>ProQuest Central Essentials</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection (Proquest) (PQ_SDU_P3)</collection><collection>Agriculture Science Database</collection><collection>ProQuest Science Journals</collection><collection>Environmental Science Database</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>Environmental Science Collection</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Rice (New York, N.Y.)</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Zhou, Chao</au><au>Liu, Xiaoyun</au><au>Li, Xinglei</au><au>Zhou, Hanlin</au><au>Wang, Sijia</au><au>Yuan, Zhu</au><au>Zhang, Yonghong</au><au>Li, Sanhe</au><au>You, Aiqing</au><au>Zhou, Lei</au><au>He, Zhengquan</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling</atitle><jtitle>Rice (New York, N.Y.)</jtitle><stitle>Rice</stitle><date>2021-12-01</date><risdate>2021</risdate><volume>14</volume><issue>1</issue><spage>72</spage><epage>72</epage><pages>72-72</pages><artnum>72</artnum><issn>1939-8425</issn><eissn>1939-8433</eissn><eissn>1934-8037</eissn><abstract>Evolutionarily, polyploidy represents a smart method for adjusting agronomically important in crops through impacts on genomic abundance and chromatin condensation. Autopolyploids have a relatively concise genetic background with great diversity and provide an ideal system to understand genetic and epigenetic mechanisms attributed to the genome-dosage effect. However, whether and how genome duplication events during autopolyploidization impact chromatin signatures are less understood in crops. To address it, we generated an autotetraploid rice line from a diploid progenitor,
Oryza sativa
ssp.
indica
93-11. Using transposase-accessible chromatin sequencing, we found that autopolyploids lead to a higher number of accessible chromatin regions (ACRs) in euchromatin, most of which encode protein-coding genes. As expected, the profiling of ACR densities supported that the effect of ACRs on transcriptional gene activities relies on their positions in the rice genome, regardless of genome doubling. However, we noticed that genome duplication favors genic ACRs as the main drivers of transcriptional changes. In addition, we probed intricate crosstalk among various kinds of epigenetic marks and expression patterns of ACR-associated gene expression in both diploid and autotetraploid rice plants by integrating multiple-omics analyses, including chromatin immunoprecipitation sequencing and RNA-seq. Our data suggested that the combination of H3K36me2 and H3K36me3 may be associated with dynamic perturbation of ACRs introduced by autopolyploidization. As a consequence, we found that numerous metabolites were stimulated by genome doubling. Collectively, our findings suggest that autotetraploids reshape rice morphology and products by modulating chromatin signatures and transcriptional profiling, resulting in a pragmatic means of crop genetic improvement.</abstract><cop>New York</cop><pub>Springer US</pub><pmid>34347189</pmid><doi>10.1186/s12284-021-00515-7</doi><tpages>1</tpages><orcidid>https://orcid.org/0000-0002-6205-2573</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1939-8425 |
ispartof | Rice (New York, N.Y.), 2021-12, Vol.14 (1), p.72-72, Article 72 |
issn | 1939-8425 1939-8433 1934-8037 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_13c1f6e3f1414bc6b6615ab7da6cb609 |
source | PubMed (Medline); Publicly Available Content Database; Springer Nature - SpringerLink Journals - Fully Open Access; Springer Nature |
subjects | Accessibility Accessible chromatin regions Agriculture Autopolyploid Autotetraploid Biomedical and Life Sciences Chromatin Condensates Crops Crosstalk Epigenetic marks Epigenetics Euchromatin Gene expression Gene sequencing Genetic diversity Genetic improvement Genomes Immunoprecipitation Life Sciences Metabolites Morphology Original Original Article Perturbation Plant Breeding/Biotechnology Plant Ecology Plant Genetics and Genomics Plant Sciences Polyploidy Reproduction (copying) Rice Signatures Transcription Transcriptional regulation Transposase |
title | A Genome Doubling Event Reshapes Rice Morphology and Products by Modulating Chromatin Signatures and Gene Expression Profiling |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-07T21%3A02%3A27IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Genome%20Doubling%20Event%20Reshapes%20Rice%20Morphology%20and%20Products%20by%20Modulating%20Chromatin%20Signatures%20and%20Gene%20Expression%20Profiling&rft.jtitle=Rice%20(New%20York,%20N.Y.)&rft.au=Zhou,%20Chao&rft.date=2021-12-01&rft.volume=14&rft.issue=1&rft.spage=72&rft.epage=72&rft.pages=72-72&rft.artnum=72&rft.issn=1939-8425&rft.eissn=1939-8433&rft_id=info:doi/10.1186/s12284-021-00515-7&rft_dat=%3Cproquest_doaj_%3E2558091907%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c517t-df467035652dc0d8d317d28fc42f6e585980cd060f7170feb83798e1fbe1c9943%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2557914213&rft_id=info:pmid/34347189&rfr_iscdi=true |