Loading…

Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens

The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a str...

Full description

Saved in:
Bibliographic Details
Published in:Applied sciences 2018-03, Vol.8 (3), p.375
Main Authors: Ferreira, Natália, Antunes, Pedro, Ferreira, José, D. M. Costa, José, Capela, Carlos
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163
cites cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163
container_end_page
container_issue 3
container_start_page 375
container_title Applied sciences
container_volume 8
creator Ferreira, Natália
Antunes, Pedro
Ferreira, José
D. M. Costa, José
Capela, Carlos
description The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.
doi_str_mv 10.3390/app8030375
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9</doaj_id><sourcerecordid>2314060941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</originalsourceid><addsrcrecordid>eNpNkctKAzEUhoMoWGo3PkHAnTCa2-SyLKXVQsFi6zpkcmmntpMxmS58e6dW1LM5t5_vHPgBuMXogVKFHk3bSkQRFeUFGBAkeEEZFpf_6mswynmH-lCYSowGwE1D8LbLMAa42sauWHrf1M0GmsbBVZd8zvDVdHWEsYHd1sNZ32yOHk6Sse9wmWJrNqd9cyKMF1AwURZrQUsMV6239cE3-QZcBbPPfvSTh-BtNl1PnovFy9N8Ml4UlnLcFZxxR6gKikmGsWMVdzYgQWyQJXUiBCV9FZxVQSBa8oAFR5JYYpTALGBOh2B-5rpodrpN9cGkTx1Nrb8HMW20SV1t915jao2VpJKqwoxxolzwJXFeKmY4qVTPujuz2hQ_jj53ehePqenf14RihjhSDPeq-7PKpphz8uH3Kkb6ZIr-M4V-Ac9ee3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314060941</pqid></control><display><type>article</type><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><source>Publicly Available Content Database</source><creator>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</creator><creatorcontrib>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</creatorcontrib><description>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8030375</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aeronautical aluminum alloys ; Aerospace engineering ; Aerospace materials ; Aircraft ; Alloys ; Aluminum alloys ; Compressive properties ; Corrosion resistance ; Crack closure ; Crack initiation ; Crack propagation ; Damage assessment ; Damage tolerance ; Design engineering ; fatigue crack propagation ; Fatigue cracks ; Fracture mechanics ; Free surfaces ; Growth rate ; Lasers ; Load ; Mechanical engineering ; Metal fatigue ; overloads ; Paris law ; Propagation ; Residual stress ; shot peening ; Strain hardening ; Stress concentration ; Stress distribution ; Stress propagation ; Stress ratio ; Tensile stress ; Test methods ; Thickness ; Yield stress</subject><ispartof>Applied sciences, 2018-03, Vol.8 (3), p.375</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</citedby><cites>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314060941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314060941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ferreira, Natália</creatorcontrib><creatorcontrib>Antunes, Pedro</creatorcontrib><creatorcontrib>Ferreira, José</creatorcontrib><creatorcontrib>D. M. Costa, José</creatorcontrib><creatorcontrib>Capela, Carlos</creatorcontrib><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><title>Applied sciences</title><description>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</description><subject>aeronautical aluminum alloys</subject><subject>Aerospace engineering</subject><subject>Aerospace materials</subject><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Compressive properties</subject><subject>Corrosion resistance</subject><subject>Crack closure</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Damage tolerance</subject><subject>Design engineering</subject><subject>fatigue crack propagation</subject><subject>Fatigue cracks</subject><subject>Fracture mechanics</subject><subject>Free surfaces</subject><subject>Growth rate</subject><subject>Lasers</subject><subject>Load</subject><subject>Mechanical engineering</subject><subject>Metal fatigue</subject><subject>overloads</subject><subject>Paris law</subject><subject>Propagation</subject><subject>Residual stress</subject><subject>shot peening</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress propagation</subject><subject>Stress ratio</subject><subject>Tensile stress</subject><subject>Test methods</subject><subject>Thickness</subject><subject>Yield stress</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctKAzEUhoMoWGo3PkHAnTCa2-SyLKXVQsFi6zpkcmmntpMxmS58e6dW1LM5t5_vHPgBuMXogVKFHk3bSkQRFeUFGBAkeEEZFpf_6mswynmH-lCYSowGwE1D8LbLMAa42sauWHrf1M0GmsbBVZd8zvDVdHWEsYHd1sNZ32yOHk6Sse9wmWJrNqd9cyKMF1AwURZrQUsMV6239cE3-QZcBbPPfvSTh-BtNl1PnovFy9N8Ml4UlnLcFZxxR6gKikmGsWMVdzYgQWyQJXUiBCV9FZxVQSBa8oAFR5JYYpTALGBOh2B-5rpodrpN9cGkTx1Nrb8HMW20SV1t915jao2VpJKqwoxxolzwJXFeKmY4qVTPujuz2hQ_jj53ehePqenf14RihjhSDPeq-7PKpphz8uH3Kkb6ZIr-M4V-Ac9ee3k</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ferreira, Natália</creator><creator>Antunes, Pedro</creator><creator>Ferreira, José</creator><creator>D. M. Costa, José</creator><creator>Capela, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180301</creationdate><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><author>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aeronautical aluminum alloys</topic><topic>Aerospace engineering</topic><topic>Aerospace materials</topic><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Compressive properties</topic><topic>Corrosion resistance</topic><topic>Crack closure</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Damage tolerance</topic><topic>Design engineering</topic><topic>fatigue crack propagation</topic><topic>Fatigue cracks</topic><topic>Fracture mechanics</topic><topic>Free surfaces</topic><topic>Growth rate</topic><topic>Lasers</topic><topic>Load</topic><topic>Mechanical engineering</topic><topic>Metal fatigue</topic><topic>overloads</topic><topic>Paris law</topic><topic>Propagation</topic><topic>Residual stress</topic><topic>shot peening</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress propagation</topic><topic>Stress ratio</topic><topic>Tensile stress</topic><topic>Test methods</topic><topic>Thickness</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Natália</creatorcontrib><creatorcontrib>Antunes, Pedro</creatorcontrib><creatorcontrib>Ferreira, José</creatorcontrib><creatorcontrib>D. M. Costa, José</creatorcontrib><creatorcontrib>Capela, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Natália</au><au>Antunes, Pedro</au><au>Ferreira, José</au><au>D. M. Costa, José</au><au>Capela, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</atitle><jtitle>Applied sciences</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>375</spage><pages>375-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8030375</doi><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2076-3417
ispartof Applied sciences, 2018-03, Vol.8 (3), p.375
issn 2076-3417
2076-3417
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9
source Publicly Available Content Database
subjects aeronautical aluminum alloys
Aerospace engineering
Aerospace materials
Aircraft
Alloys
Aluminum alloys
Compressive properties
Corrosion resistance
Crack closure
Crack initiation
Crack propagation
Damage assessment
Damage tolerance
Design engineering
fatigue crack propagation
Fatigue cracks
Fracture mechanics
Free surfaces
Growth rate
Lasers
Load
Mechanical engineering
Metal fatigue
overloads
Paris law
Propagation
Residual stress
shot peening
Strain hardening
Stress concentration
Stress distribution
Stress propagation
Stress ratio
Tensile stress
Test methods
Thickness
Yield stress
title Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Shot-Peening%20and%20Stress%20Ratio%20on%20the%20Fatigue%20Crack%20Propagation%20of%20AL%207475-T7351%20Specimens&rft.jtitle=Applied%20sciences&rft.au=Ferreira,%20Nat%C3%A1lia&rft.date=2018-03-01&rft.volume=8&rft.issue=3&rft.spage=375&rft.pages=375-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8030375&rft_dat=%3Cproquest_doaj_%3E2314060941%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314060941&rft_id=info:pmid/&rfr_iscdi=true