Loading…
Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens
The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a str...
Saved in:
Published in: | Applied sciences 2018-03, Vol.8 (3), p.375 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163 |
---|---|
cites | cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163 |
container_end_page | |
container_issue | 3 |
container_start_page | 375 |
container_title | Applied sciences |
container_volume | 8 |
creator | Ferreira, Natália Antunes, Pedro Ferreira, José D. M. Costa, José Capela, Carlos |
description | The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa. |
doi_str_mv | 10.3390/app8030375 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9</doaj_id><sourcerecordid>2314060941</sourcerecordid><originalsourceid>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</originalsourceid><addsrcrecordid>eNpNkctKAzEUhoMoWGo3PkHAnTCa2-SyLKXVQsFi6zpkcmmntpMxmS58e6dW1LM5t5_vHPgBuMXogVKFHk3bSkQRFeUFGBAkeEEZFpf_6mswynmH-lCYSowGwE1D8LbLMAa42sauWHrf1M0GmsbBVZd8zvDVdHWEsYHd1sNZ32yOHk6Sse9wmWJrNqd9cyKMF1AwURZrQUsMV6239cE3-QZcBbPPfvSTh-BtNl1PnovFy9N8Ml4UlnLcFZxxR6gKikmGsWMVdzYgQWyQJXUiBCV9FZxVQSBa8oAFR5JYYpTALGBOh2B-5rpodrpN9cGkTx1Nrb8HMW20SV1t915jao2VpJKqwoxxolzwJXFeKmY4qVTPujuz2hQ_jj53ehePqenf14RihjhSDPeq-7PKpphz8uH3Kkb6ZIr-M4V-Ac9ee3k</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2314060941</pqid></control><display><type>article</type><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><source>Publicly Available Content Database</source><creator>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</creator><creatorcontrib>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</creatorcontrib><description>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</description><identifier>ISSN: 2076-3417</identifier><identifier>EISSN: 2076-3417</identifier><identifier>DOI: 10.3390/app8030375</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>aeronautical aluminum alloys ; Aerospace engineering ; Aerospace materials ; Aircraft ; Alloys ; Aluminum alloys ; Compressive properties ; Corrosion resistance ; Crack closure ; Crack initiation ; Crack propagation ; Damage assessment ; Damage tolerance ; Design engineering ; fatigue crack propagation ; Fatigue cracks ; Fracture mechanics ; Free surfaces ; Growth rate ; Lasers ; Load ; Mechanical engineering ; Metal fatigue ; overloads ; Paris law ; Propagation ; Residual stress ; shot peening ; Strain hardening ; Stress concentration ; Stress distribution ; Stress propagation ; Stress ratio ; Tensile stress ; Test methods ; Thickness ; Yield stress</subject><ispartof>Applied sciences, 2018-03, Vol.8 (3), p.375</ispartof><rights>2018. This work is licensed under https://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</citedby><cites>FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2314060941/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2314060941?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,780,784,25753,27924,27925,37012,44590,74998</link.rule.ids></links><search><creatorcontrib>Ferreira, Natália</creatorcontrib><creatorcontrib>Antunes, Pedro</creatorcontrib><creatorcontrib>Ferreira, José</creatorcontrib><creatorcontrib>D. M. Costa, José</creatorcontrib><creatorcontrib>Capela, Carlos</creatorcontrib><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><title>Applied sciences</title><description>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</description><subject>aeronautical aluminum alloys</subject><subject>Aerospace engineering</subject><subject>Aerospace materials</subject><subject>Aircraft</subject><subject>Alloys</subject><subject>Aluminum alloys</subject><subject>Compressive properties</subject><subject>Corrosion resistance</subject><subject>Crack closure</subject><subject>Crack initiation</subject><subject>Crack propagation</subject><subject>Damage assessment</subject><subject>Damage tolerance</subject><subject>Design engineering</subject><subject>fatigue crack propagation</subject><subject>Fatigue cracks</subject><subject>Fracture mechanics</subject><subject>Free surfaces</subject><subject>Growth rate</subject><subject>Lasers</subject><subject>Load</subject><subject>Mechanical engineering</subject><subject>Metal fatigue</subject><subject>overloads</subject><subject>Paris law</subject><subject>Propagation</subject><subject>Residual stress</subject><subject>shot peening</subject><subject>Strain hardening</subject><subject>Stress concentration</subject><subject>Stress distribution</subject><subject>Stress propagation</subject><subject>Stress ratio</subject><subject>Tensile stress</subject><subject>Test methods</subject><subject>Thickness</subject><subject>Yield stress</subject><issn>2076-3417</issn><issn>2076-3417</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2018</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNkctKAzEUhoMoWGo3PkHAnTCa2-SyLKXVQsFi6zpkcmmntpMxmS58e6dW1LM5t5_vHPgBuMXogVKFHk3bSkQRFeUFGBAkeEEZFpf_6mswynmH-lCYSowGwE1D8LbLMAa42sauWHrf1M0GmsbBVZd8zvDVdHWEsYHd1sNZ32yOHk6Sse9wmWJrNqd9cyKMF1AwURZrQUsMV6239cE3-QZcBbPPfvSTh-BtNl1PnovFy9N8Ml4UlnLcFZxxR6gKikmGsWMVdzYgQWyQJXUiBCV9FZxVQSBa8oAFR5JYYpTALGBOh2B-5rpodrpN9cGkTx1Nrb8HMW20SV1t915jao2VpJKqwoxxolzwJXFeKmY4qVTPujuz2hQ_jj53ehePqenf14RihjhSDPeq-7PKpphz8uH3Kkb6ZIr-M4V-Ac9ee3k</recordid><startdate>20180301</startdate><enddate>20180301</enddate><creator>Ferreira, Natália</creator><creator>Antunes, Pedro</creator><creator>Ferreira, José</creator><creator>D. M. Costa, José</creator><creator>Capela, Carlos</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope></search><sort><creationdate>20180301</creationdate><title>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</title><author>Ferreira, Natália ; Antunes, Pedro ; Ferreira, José ; D. M. Costa, José ; Capela, Carlos</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2018</creationdate><topic>aeronautical aluminum alloys</topic><topic>Aerospace engineering</topic><topic>Aerospace materials</topic><topic>Aircraft</topic><topic>Alloys</topic><topic>Aluminum alloys</topic><topic>Compressive properties</topic><topic>Corrosion resistance</topic><topic>Crack closure</topic><topic>Crack initiation</topic><topic>Crack propagation</topic><topic>Damage assessment</topic><topic>Damage tolerance</topic><topic>Design engineering</topic><topic>fatigue crack propagation</topic><topic>Fatigue cracks</topic><topic>Fracture mechanics</topic><topic>Free surfaces</topic><topic>Growth rate</topic><topic>Lasers</topic><topic>Load</topic><topic>Mechanical engineering</topic><topic>Metal fatigue</topic><topic>overloads</topic><topic>Paris law</topic><topic>Propagation</topic><topic>Residual stress</topic><topic>shot peening</topic><topic>Strain hardening</topic><topic>Stress concentration</topic><topic>Stress distribution</topic><topic>Stress propagation</topic><topic>Stress ratio</topic><topic>Tensile stress</topic><topic>Test methods</topic><topic>Thickness</topic><topic>Yield stress</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Ferreira, Natália</creatorcontrib><creatorcontrib>Antunes, Pedro</creatorcontrib><creatorcontrib>Ferreira, José</creatorcontrib><creatorcontrib>D. M. Costa, José</creatorcontrib><creatorcontrib>Capela, Carlos</creatorcontrib><collection>CrossRef</collection><collection>ProQuest Central (Alumni Edition)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central Korea</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Applied sciences</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Ferreira, Natália</au><au>Antunes, Pedro</au><au>Ferreira, José</au><au>D. M. Costa, José</au><au>Capela, Carlos</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens</atitle><jtitle>Applied sciences</jtitle><date>2018-03-01</date><risdate>2018</risdate><volume>8</volume><issue>3</issue><spage>375</spage><pages>375-</pages><issn>2076-3417</issn><eissn>2076-3417</eissn><abstract>The approach to engineering design based on the assumption that flaws can exist in any structure and cracks propagate in service, is commonly used in aerospace engineering. [...]the prediction of crack growth rates based on the application of fracture mechanics theory is an important aspect of a structural damage tolerant assessment. According to the material manufacturer, the ultimate tensile stress and yield stress are σUTS = 490 MPa and σYS = 414 MPa, respectively. In the present study, specimens were machined from the same thickness bars, so there is no microstructure change between 4 and 8 mm thickness specimens. [...]the effect of thickness is only caused by changes in stress distribution along cross section and consequent variation on crack closure level [31]. According to the diffraction peak breadth profiles, the thickness layer affected by all surface treatments is circa 200 µm. The average value of the compressive residual stresses occurring trough a layer below the free surface with a 150 µm depth is about 200 MPa.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/app8030375</doi><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2076-3417 |
ispartof | Applied sciences, 2018-03, Vol.8 (3), p.375 |
issn | 2076-3417 2076-3417 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_13cac82b89b144629dfe52de894a62b9 |
source | Publicly Available Content Database |
subjects | aeronautical aluminum alloys Aerospace engineering Aerospace materials Aircraft Alloys Aluminum alloys Compressive properties Corrosion resistance Crack closure Crack initiation Crack propagation Damage assessment Damage tolerance Design engineering fatigue crack propagation Fatigue cracks Fracture mechanics Free surfaces Growth rate Lasers Load Mechanical engineering Metal fatigue overloads Paris law Propagation Residual stress shot peening Strain hardening Stress concentration Stress distribution Stress propagation Stress ratio Tensile stress Test methods Thickness Yield stress |
title | Effects of Shot-Peening and Stress Ratio on the Fatigue Crack Propagation of AL 7475-T7351 Specimens |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-08T02%3A06%3A11IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Effects%20of%20Shot-Peening%20and%20Stress%20Ratio%20on%20the%20Fatigue%20Crack%20Propagation%20of%20AL%207475-T7351%20Specimens&rft.jtitle=Applied%20sciences&rft.au=Ferreira,%20Nat%C3%A1lia&rft.date=2018-03-01&rft.volume=8&rft.issue=3&rft.spage=375&rft.pages=375-&rft.issn=2076-3417&rft.eissn=2076-3417&rft_id=info:doi/10.3390/app8030375&rft_dat=%3Cproquest_doaj_%3E2314060941%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c361t-646d239f948411d4b6dcf072cf853d7ff98ebfdc9f70356f176082c2a9714f163%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2314060941&rft_id=info:pmid/&rfr_iscdi=true |