Loading…
Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool
Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus...
Saved in:
Published in: | BMC bioinformatics 2024-11, Vol.25 (1), p.351-13, Article 351 |
---|---|
Main Authors: | , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c479t-b2533eba600da9d19c9377761128b196975760f4a701fe8f0692e3445a17d7583 |
container_end_page | 13 |
container_issue | 1 |
container_start_page | 351 |
container_title | BMC bioinformatics |
container_volume | 25 |
creator | Beltrán, Jorge F Belén, Lisandra Herrera Yáñez, Alejandro J Jimenez, Luis |
description | Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus-host interactions. Leveraging advancements in computational biology, we present VirusHound-II, a novel tool that utilizes machine learning techniques to predict viral proteins evading the innate immune response with high accuracy. We evaluated a comprehensive range of machine learning models, including ensemble methods, neural networks, and support vector machines. Using a dataset of 1337 viral proteins known to evade the innate immune response (VPEINRs) and an equal number of non-VPEINRs, we employed pseudo amino acid composition as the molecular descriptor. Our methodology involved a tenfold cross-validation strategy on 80% of the data for training, followed by testing on an independent dataset comprising the remaining 20%. The random forest model demonstrated superior performance metrics, achieving 0.9290 accuracy, 0.9283 F1 score, 0.9354 precision, and 0.9213 sensitivity in the independent testing phase. These results establish VirusHound-II as an advancement in computational virology, accessible via a user-friendly web application. We anticipate that VirusHound-II will be a crucial resource for researchers, enabling the rapid and reliable prediction of viral proteins evading the innate immune response. This tool has the potential to accelerate the identification of therapeutic targets and enhance our understanding of viral evasion mechanisms, contributing to the development of more effective antiviral strategies and advancing our knowledge of virus-host interactions. |
doi_str_mv | 10.1186/s12859-024-05972-7 |
format | article |
fullrecord | <record><control><sourceid>gale_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_13cff1ec5b954ef29f640873577dae3f</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><galeid>A815377042</galeid><doaj_id>oai_doaj_org_article_13cff1ec5b954ef29f640873577dae3f</doaj_id><sourcerecordid>A815377042</sourcerecordid><originalsourceid>FETCH-LOGICAL-c479t-b2533eba600da9d19c9377761128b196975760f4a701fe8f0692e3445a17d7583</originalsourceid><addsrcrecordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWI7dhyzQVXFY6RKIB5ry-Ncz3iU2IPtjOi_506nlA5CXti-_u5J7tGpqueUnFPad28yZb1QDWG8IUJJ1sgH1SnlkjaMEvHw3vmkepLzhhAqeyIeVyetEozh7bQKXxIM3hYfVvXOJzPW2xQL-JDrsjalhp0ZAI9Q-xBMwW2a5gB1vs4Fpre1qSdj1x4rI5gUUKZZmgzDgYs-uJgmU7xFvRjHp9UjZ8YMz273s-rHh_ffLz81V58_Li4vrhrLpSrNkom2haXpCBmMGqiyqpVSdhQnXlLVKSlkRxw3klAHvSOdYtByLgyVgxR9e1YtDrpDNBu9TX4y6VpH4_VNIaaVNgn_agRNW-scBSuWSnBwTLmOk162QsrBQOtQ691BazsvJxgshII-HYkevwS_1qu405QKQQRTqPDqViHFnzPkoiefLYyjCRDnrFscS3LJKEf05T_oJs4poFd7quOUcdr_pVYGJ9ibjB-2e1F90VOBXhHOkDr_D4VrgMnbGMB5rB81vD5qQKbAr7Iyc8568e3rMcsOrE0x5wTuzhBK9D6e-hBPjfHUN_HUEpte3LfyruVPHtvf4gjeZA</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3126412418</pqid></control><display><type>article</type><title>Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool</title><source>Publicly Available Content Database</source><source>PubMed Central</source><source>Coronavirus Research Database</source><creator>Beltrán, Jorge F ; Belén, Lisandra Herrera ; Yáñez, Alejandro J ; Jimenez, Luis</creator><creatorcontrib>Beltrán, Jorge F ; Belén, Lisandra Herrera ; Yáñez, Alejandro J ; Jimenez, Luis</creatorcontrib><description>Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus-host interactions. Leveraging advancements in computational biology, we present VirusHound-II, a novel tool that utilizes machine learning techniques to predict viral proteins evading the innate immune response with high accuracy. We evaluated a comprehensive range of machine learning models, including ensemble methods, neural networks, and support vector machines. Using a dataset of 1337 viral proteins known to evade the innate immune response (VPEINRs) and an equal number of non-VPEINRs, we employed pseudo amino acid composition as the molecular descriptor. Our methodology involved a tenfold cross-validation strategy on 80% of the data for training, followed by testing on an independent dataset comprising the remaining 20%. The random forest model demonstrated superior performance metrics, achieving 0.9290 accuracy, 0.9283 F1 score, 0.9354 precision, and 0.9213 sensitivity in the independent testing phase. These results establish VirusHound-II as an advancement in computational virology, accessible via a user-friendly web application. We anticipate that VirusHound-II will be a crucial resource for researchers, enabling the rapid and reliable prediction of viral proteins evading the innate immune response. This tool has the potential to accelerate the identification of therapeutic targets and enhance our understanding of viral evasion mechanisms, contributing to the development of more effective antiviral strategies and advancing our knowledge of virus-host interactions.</description><identifier>ISSN: 1471-2105</identifier><identifier>EISSN: 1471-2105</identifier><identifier>DOI: 10.1186/s12859-024-05972-7</identifier><identifier>PMID: 39522017</identifier><language>eng</language><publisher>England: BioMed Central Ltd</publisher><subject>Accuracy ; Algorithms ; Amino acid composition ; Amino acids ; Applications programs ; Computational Biology - methods ; Computer applications ; Datasets ; Deep learning ; Discriminant analysis ; Ensemble learning ; Host-virus relationships ; Humans ; Immune Evasion ; Immune response ; Immune system ; Immunity, Innate - immunology ; Immunoinformatics ; Immunological research ; Infections ; Innate immunity ; Learning algorithms ; Machine Learning ; Neural networks ; Pathogenesis ; Pathogens ; Performance measurement ; Physiological aspects ; Protein ; Proteins ; Python ; Sensitivity analysis ; Software ; Support Vector Machine ; Support vector machines ; Therapeutic targets ; Viral infections ; Viral proteins ; Viral Proteins - chemistry ; Viral Proteins - immunology ; Virology ; Virus ; Viruses</subject><ispartof>BMC bioinformatics, 2024-11, Vol.25 (1), p.351-13, Article 351</ispartof><rights>2024. The Author(s).</rights><rights>COPYRIGHT 2024 BioMed Central Ltd.</rights><rights>2024. This work is licensed under http://creativecommons.org/licenses/by-nc-nd/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><rights>The Author(s) 2024 2024</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c479t-b2533eba600da9d19c9377761128b196975760f4a701fe8f0692e3445a17d7583</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.ncbi.nlm.nih.gov/pmc/articles/PMC11550529/pdf/$$EPDF$$P50$$Gpubmedcentral$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3126412418?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,38516,43895,44590,53791,53793</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/39522017$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Beltrán, Jorge F</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Yáñez, Alejandro J</creatorcontrib><creatorcontrib>Jimenez, Luis</creatorcontrib><title>Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool</title><title>BMC bioinformatics</title><addtitle>BMC Bioinformatics</addtitle><description>Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus-host interactions. Leveraging advancements in computational biology, we present VirusHound-II, a novel tool that utilizes machine learning techniques to predict viral proteins evading the innate immune response with high accuracy. We evaluated a comprehensive range of machine learning models, including ensemble methods, neural networks, and support vector machines. Using a dataset of 1337 viral proteins known to evade the innate immune response (VPEINRs) and an equal number of non-VPEINRs, we employed pseudo amino acid composition as the molecular descriptor. Our methodology involved a tenfold cross-validation strategy on 80% of the data for training, followed by testing on an independent dataset comprising the remaining 20%. The random forest model demonstrated superior performance metrics, achieving 0.9290 accuracy, 0.9283 F1 score, 0.9354 precision, and 0.9213 sensitivity in the independent testing phase. These results establish VirusHound-II as an advancement in computational virology, accessible via a user-friendly web application. We anticipate that VirusHound-II will be a crucial resource for researchers, enabling the rapid and reliable prediction of viral proteins evading the innate immune response. This tool has the potential to accelerate the identification of therapeutic targets and enhance our understanding of viral evasion mechanisms, contributing to the development of more effective antiviral strategies and advancing our knowledge of virus-host interactions.</description><subject>Accuracy</subject><subject>Algorithms</subject><subject>Amino acid composition</subject><subject>Amino acids</subject><subject>Applications programs</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Datasets</subject><subject>Deep learning</subject><subject>Discriminant analysis</subject><subject>Ensemble learning</subject><subject>Host-virus relationships</subject><subject>Humans</subject><subject>Immune Evasion</subject><subject>Immune response</subject><subject>Immune system</subject><subject>Immunity, Innate - immunology</subject><subject>Immunoinformatics</subject><subject>Immunological research</subject><subject>Infections</subject><subject>Innate immunity</subject><subject>Learning algorithms</subject><subject>Machine Learning</subject><subject>Neural networks</subject><subject>Pathogenesis</subject><subject>Pathogens</subject><subject>Performance measurement</subject><subject>Physiological aspects</subject><subject>Protein</subject><subject>Proteins</subject><subject>Python</subject><subject>Sensitivity analysis</subject><subject>Software</subject><subject>Support Vector Machine</subject><subject>Support vector machines</subject><subject>Therapeutic targets</subject><subject>Viral infections</subject><subject>Viral proteins</subject><subject>Viral Proteins - chemistry</subject><subject>Viral Proteins - immunology</subject><subject>Virology</subject><subject>Virus</subject><subject>Viruses</subject><issn>1471-2105</issn><issn>1471-2105</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>COVID</sourceid><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNptkktv1DAUhSMEoqXwB1igSGxgkWI7dhyzQVXFY6RKIB5ry-Ncz3iU2IPtjOi_506nlA5CXti-_u5J7tGpqueUnFPad28yZb1QDWG8IUJJ1sgH1SnlkjaMEvHw3vmkepLzhhAqeyIeVyetEozh7bQKXxIM3hYfVvXOJzPW2xQL-JDrsjalhp0ZAI9Q-xBMwW2a5gB1vs4Fpre1qSdj1x4rI5gUUKZZmgzDgYs-uJgmU7xFvRjHp9UjZ8YMz273s-rHh_ffLz81V58_Li4vrhrLpSrNkom2haXpCBmMGqiyqpVSdhQnXlLVKSlkRxw3klAHvSOdYtByLgyVgxR9e1YtDrpDNBu9TX4y6VpH4_VNIaaVNgn_agRNW-scBSuWSnBwTLmOk162QsrBQOtQ691BazsvJxgshII-HYkevwS_1qu405QKQQRTqPDqViHFnzPkoiefLYyjCRDnrFscS3LJKEf05T_oJs4poFd7quOUcdr_pVYGJ9ibjB-2e1F90VOBXhHOkDr_D4VrgMnbGMB5rB81vD5qQKbAr7Iyc8568e3rMcsOrE0x5wTuzhBK9D6e-hBPjfHUN_HUEpte3LfyruVPHtvf4gjeZA</recordid><startdate>20241109</startdate><enddate>20241109</enddate><creator>Beltrán, Jorge F</creator><creator>Belén, Lisandra Herrera</creator><creator>Yáñez, Alejandro J</creator><creator>Jimenez, Luis</creator><general>BioMed Central Ltd</general><general>BioMed Central</general><general>BMC</general><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>ISR</scope><scope>3V.</scope><scope>7QO</scope><scope>7SC</scope><scope>7X7</scope><scope>7XB</scope><scope>88E</scope><scope>8AL</scope><scope>8AO</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>ARAPS</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>COVID</scope><scope>DWQXO</scope><scope>FR3</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>JQ2</scope><scope>K7-</scope><scope>K9.</scope><scope>L7M</scope><scope>LK8</scope><scope>L~C</scope><scope>L~D</scope><scope>M0N</scope><scope>M0S</scope><scope>M1P</scope><scope>M7P</scope><scope>P5Z</scope><scope>P62</scope><scope>P64</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20241109</creationdate><title>Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool</title><author>Beltrán, Jorge F ; Belén, Lisandra Herrera ; Yáñez, Alejandro J ; Jimenez, Luis</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c479t-b2533eba600da9d19c9377761128b196975760f4a701fe8f0692e3445a17d7583</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>Accuracy</topic><topic>Algorithms</topic><topic>Amino acid composition</topic><topic>Amino acids</topic><topic>Applications programs</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Datasets</topic><topic>Deep learning</topic><topic>Discriminant analysis</topic><topic>Ensemble learning</topic><topic>Host-virus relationships</topic><topic>Humans</topic><topic>Immune Evasion</topic><topic>Immune response</topic><topic>Immune system</topic><topic>Immunity, Innate - immunology</topic><topic>Immunoinformatics</topic><topic>Immunological research</topic><topic>Infections</topic><topic>Innate immunity</topic><topic>Learning algorithms</topic><topic>Machine Learning</topic><topic>Neural networks</topic><topic>Pathogenesis</topic><topic>Pathogens</topic><topic>Performance measurement</topic><topic>Physiological aspects</topic><topic>Protein</topic><topic>Proteins</topic><topic>Python</topic><topic>Sensitivity analysis</topic><topic>Software</topic><topic>Support Vector Machine</topic><topic>Support vector machines</topic><topic>Therapeutic targets</topic><topic>Viral infections</topic><topic>Viral proteins</topic><topic>Viral Proteins - chemistry</topic><topic>Viral Proteins - immunology</topic><topic>Virology</topic><topic>Virus</topic><topic>Viruses</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Beltrán, Jorge F</creatorcontrib><creatorcontrib>Belén, Lisandra Herrera</creatorcontrib><creatorcontrib>Yáñez, Alejandro J</creatorcontrib><creatorcontrib>Jimenez, Luis</creatorcontrib><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>Gale In Context: Science</collection><collection>ProQuest Central (Corporate)</collection><collection>Biotechnology Research Abstracts</collection><collection>Computer and Information Systems Abstracts</collection><collection>ProQuest Health and Medical</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Computing Database (Alumni Edition)</collection><collection>ProQuest Pharma Collection</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>Advanced Technologies & Aerospace Collection</collection><collection>ProQuest Central</collection><collection>Biological Science Collection</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>Coronavirus Research Database</collection><collection>ProQuest Central</collection><collection>Engineering Research Database</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Computer Science Collection</collection><collection>Computer science database</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>ProQuest Biological Science Collection</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Computing Database</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>PML(ProQuest Medical Library)</collection><collection>Biological Science Database</collection><collection>ProQuest advanced technologies & aerospace journals</collection><collection>ProQuest Advanced Technologies & Aerospace Collection</collection><collection>Biotechnology and BioEngineering Abstracts</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>BMC bioinformatics</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Beltrán, Jorge F</au><au>Belén, Lisandra Herrera</au><au>Yáñez, Alejandro J</au><au>Jimenez, Luis</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool</atitle><jtitle>BMC bioinformatics</jtitle><addtitle>BMC Bioinformatics</addtitle><date>2024-11-09</date><risdate>2024</risdate><volume>25</volume><issue>1</issue><spage>351</spage><epage>13</epage><pages>351-13</pages><artnum>351</artnum><issn>1471-2105</issn><eissn>1471-2105</eissn><abstract>Viral proteins that evade the host's innate immune response play a crucial role in pathogenesis, significantly impacting viral infections and potential therapeutic strategies. Identifying these proteins through traditional methods is challenging and time-consuming due to the complexity of virus-host interactions. Leveraging advancements in computational biology, we present VirusHound-II, a novel tool that utilizes machine learning techniques to predict viral proteins evading the innate immune response with high accuracy. We evaluated a comprehensive range of machine learning models, including ensemble methods, neural networks, and support vector machines. Using a dataset of 1337 viral proteins known to evade the innate immune response (VPEINRs) and an equal number of non-VPEINRs, we employed pseudo amino acid composition as the molecular descriptor. Our methodology involved a tenfold cross-validation strategy on 80% of the data for training, followed by testing on an independent dataset comprising the remaining 20%. The random forest model demonstrated superior performance metrics, achieving 0.9290 accuracy, 0.9283 F1 score, 0.9354 precision, and 0.9213 sensitivity in the independent testing phase. These results establish VirusHound-II as an advancement in computational virology, accessible via a user-friendly web application. We anticipate that VirusHound-II will be a crucial resource for researchers, enabling the rapid and reliable prediction of viral proteins evading the innate immune response. This tool has the potential to accelerate the identification of therapeutic targets and enhance our understanding of viral evasion mechanisms, contributing to the development of more effective antiviral strategies and advancing our knowledge of virus-host interactions.</abstract><cop>England</cop><pub>BioMed Central Ltd</pub><pmid>39522017</pmid><doi>10.1186/s12859-024-05972-7</doi><tpages>13</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1471-2105 |
ispartof | BMC bioinformatics, 2024-11, Vol.25 (1), p.351-13, Article 351 |
issn | 1471-2105 1471-2105 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_13cff1ec5b954ef29f640873577dae3f |
source | Publicly Available Content Database; PubMed Central; Coronavirus Research Database |
subjects | Accuracy Algorithms Amino acid composition Amino acids Applications programs Computational Biology - methods Computer applications Datasets Deep learning Discriminant analysis Ensemble learning Host-virus relationships Humans Immune Evasion Immune response Immune system Immunity, Innate - immunology Immunoinformatics Immunological research Infections Innate immunity Learning algorithms Machine Learning Neural networks Pathogenesis Pathogens Performance measurement Physiological aspects Protein Proteins Python Sensitivity analysis Software Support Vector Machine Support vector machines Therapeutic targets Viral infections Viral proteins Viral Proteins - chemistry Viral Proteins - immunology Virology Virus Viruses |
title | Predicting viral proteins that evade the innate immune system: a machine learning-based immunoinformatics tool |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T04%3A26%3A13IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-gale_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Predicting%20viral%20proteins%20that%20evade%20the%20innate%20immune%20system:%20a%20machine%20learning-based%20immunoinformatics%20tool&rft.jtitle=BMC%20bioinformatics&rft.au=Beltr%C3%A1n,%20Jorge%20F&rft.date=2024-11-09&rft.volume=25&rft.issue=1&rft.spage=351&rft.epage=13&rft.pages=351-13&rft.artnum=351&rft.issn=1471-2105&rft.eissn=1471-2105&rft_id=info:doi/10.1186/s12859-024-05972-7&rft_dat=%3Cgale_doaj_%3EA815377042%3C/gale_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c479t-b2533eba600da9d19c9377761128b196975760f4a701fe8f0692e3445a17d7583%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3126412418&rft_id=info:pmid/39522017&rft_galeid=A815377042&rfr_iscdi=true |