Loading…
Analysis of Hotspots in Subsurface Drip Irrigation Research Using CiteSpace
To investigate the research hotspots and development trends of subsurface drip irrigation (SDI) over the past 20 years, this study analyzed relevant literature from the Web of Science Core Collection spanning from 2002 to 2022. The data were visualized using CiteSpace, showcasing the publication vol...
Saved in:
Published in: | Agriculture (Basel) 2023-07, Vol.13 (7), p.1463 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | To investigate the research hotspots and development trends of subsurface drip irrigation (SDI) over the past 20 years, this study analyzed relevant literature from the Web of Science Core Collection spanning from 2002 to 2022. The data were visualized using CiteSpace, showcasing the publication volume trends, countries, keywords, cited references, authors, and affiliated institutions. Based on 1079 articles, the annual publication volume showed an overall upward trend. The United States had the most extensive research coverage and highest publication volume, whereas China had the fastest growing publication rate in recent years. However, relatively little cooperation occurred among research teams and institutions. Over time, research topics became increasingly diverse, with water conservation and yield increases being the primary research objectives. In addition to improving irrigation and fertilizer use efficiency, SDI has also been applied in research on the safe utilization of unconventional water resources (wastewater and salt water) and the optimization of soil conditions. Among these, aerated irrigation technology—aimed at improving root growth in the rhizosphere—may become a new branch of SDI research. Currently, the main research focus in the field of SDI is the diffusion and distribution of water in the crop root zone, for which Hydrus model simulation is a particularly important method. |
---|---|
ISSN: | 2077-0472 2077-0472 |
DOI: | 10.3390/agriculture13071463 |