Loading…
Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential
Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to d...
Saved in:
Published in: | Scientific reports 2024-06, Vol.14 (1), p.14263-9, Article 14263 |
---|---|
Main Authors: | , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | |
---|---|
cites | cdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433 |
container_end_page | 9 |
container_issue | 1 |
container_start_page | 14263 |
container_title | Scientific reports |
container_volume | 14 |
creator | Almotairi, Sultan Badr, Elsayed Abdelbaky, Ibrahim Elhakeem, Mohamed Abdul Salam, Mustafa |
description | Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area. |
doi_str_mv | 10.1038/s41598-024-63446-5 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1400f347837541c3b610ae84ded9b653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1400f347837541c3b610ae84ded9b653</doaj_id><sourcerecordid>3070838655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuLxV5wTQiuglapyAM6WY0-2XiVxsJNK--_xbtrScsAXWzOvn5mx36J4C-QCCFMfEwfRqIpQXknGuazEi-KUEi4qyih9-eR8UpyntCN5CdpwaF4XJ0w1hFJVnxY_Lvdt9K6coxlTF-KAsdrc3JRDcNiXOVAaa5doZiyniM7b2YexDF054TR7h-UtDqHfz96WU5hxnL3p3xSvOtMnPL_fz4pfX7_83FxW19-_XW0-X1eWUzpXIJWpUVgCThrOVC5ElWklbaUhEhruQCE4BQiS1pS3KJBzzlyX94YzdlZcrVwXzE5P0Q8m7nUwXh8DIW61ibmzHjVwQjrGa8VqwcGyVgIxqLhD17RSHFifVta0tAM6myeJpn8GfZ4Z_a3ehjsNAA0BVmfCh3tCDL8XTLMefLLY92bEsCTNSE0UU1KILH3_j3QXljjmtzqqgNNakayiq8rGkFLE7rEbIPrgAb16QGcP6KMH9AH97ukcj1cefjwL2CpIOTVuMf6t_R_sHxGlu5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070142780</pqid></control><display><type>article</type><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><source>Open Access: PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</creator><creatorcontrib>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</creatorcontrib><description>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-63446-5</identifier><identifier>PMID: 38902287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45 ; 631/45/611 ; Bioinformatics ; Computational Biology - methods ; Computer applications ; Convolutional neural networks (CNNs) ; Correlation coefficient ; Deep learning ; Drug design ; Drug development ; Hemolysis ; Hemolysis - drug effects ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Peptides ; Peptides - chemistry ; Predictions ; Science ; Science (multidisciplinary) ; Transformers</subject><ispartof>Scientific reports, 2024-06, Vol.14 (1), p.14263-9, Article 14263</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3070142780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3070142780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38902287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almotairi, Sultan</creatorcontrib><creatorcontrib>Badr, Elsayed</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Elhakeem, Mohamed</creatorcontrib><creatorcontrib>Abdul Salam, Mustafa</creatorcontrib><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</description><subject>631/45</subject><subject>631/45/611</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Correlation coefficient</subject><subject>Deep learning</subject><subject>Drug design</subject><subject>Drug development</subject><subject>Hemolysis</subject><subject>Hemolysis - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Predictions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transformers</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuLxV5wTQiuglapyAM6WY0-2XiVxsJNK--_xbtrScsAXWzOvn5mx36J4C-QCCFMfEwfRqIpQXknGuazEi-KUEi4qyih9-eR8UpyntCN5CdpwaF4XJ0w1hFJVnxY_Lvdt9K6coxlTF-KAsdrc3JRDcNiXOVAaa5doZiyniM7b2YexDF054TR7h-UtDqHfz96WU5hxnL3p3xSvOtMnPL_fz4pfX7_83FxW19-_XW0-X1eWUzpXIJWpUVgCThrOVC5ElWklbaUhEhruQCE4BQiS1pS3KJBzzlyX94YzdlZcrVwXzE5P0Q8m7nUwXh8DIW61ibmzHjVwQjrGa8VqwcGyVgIxqLhD17RSHFifVta0tAM6myeJpn8GfZ4Z_a3ehjsNAA0BVmfCh3tCDL8XTLMefLLY92bEsCTNSE0UU1KILH3_j3QXljjmtzqqgNNakayiq8rGkFLE7rEbIPrgAb16QGcP6KMH9AH97ukcj1cefjwL2CpIOTVuMf6t_R_sHxGlu5w</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Almotairi, Sultan</creator><creator>Badr, Elsayed</creator><creator>Abdelbaky, Ibrahim</creator><creator>Elhakeem, Mohamed</creator><creator>Abdul Salam, Mustafa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240620</creationdate><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><author>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/45</topic><topic>631/45/611</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Correlation coefficient</topic><topic>Deep learning</topic><topic>Drug design</topic><topic>Drug development</topic><topic>Hemolysis</topic><topic>Hemolysis - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Predictions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almotairi, Sultan</creatorcontrib><creatorcontrib>Badr, Elsayed</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Elhakeem, Mohamed</creatorcontrib><creatorcontrib>Abdul Salam, Mustafa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health & Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health & Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health & Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almotairi, Sultan</au><au>Badr, Elsayed</au><au>Abdelbaky, Ibrahim</au><au>Elhakeem, Mohamed</au><au>Abdul Salam, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-06-20</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>14263</spage><epage>9</epage><pages>14263-9</pages><artnum>14263</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38902287</pmid><doi>10.1038/s41598-024-63446-5</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2045-2322 |
ispartof | Scientific reports, 2024-06, Vol.14 (1), p.14263-9, Article 14263 |
issn | 2045-2322 2045-2322 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_1400f347837541c3b610ae84ded9b653 |
source | Open Access: PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database |
subjects | 631/45 631/45/611 Bioinformatics Computational Biology - methods Computer applications Convolutional neural networks (CNNs) Correlation coefficient Deep learning Drug design Drug development Hemolysis Hemolysis - drug effects Humanities and Social Sciences Humans multidisciplinary Neural networks Neural Networks, Computer Peptides Peptides - chemistry Predictions Science Science (multidisciplinary) Transformers |
title | Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20transformer-CNN%20model%20for%20accurate%20prediction%20of%20peptide%20hemolytic%20potential&rft.jtitle=Scientific%20reports&rft.au=Almotairi,%20Sultan&rft.date=2024-06-20&rft.volume=14&rft.issue=1&rft.spage=14263&rft.epage=9&rft.pages=14263-9&rft.artnum=14263&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-63446-5&rft_dat=%3Cproquest_doaj_%3E3070838655%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070142780&rft_id=info:pmid/38902287&rfr_iscdi=true |