Loading…

Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential

Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to d...

Full description

Saved in:
Bibliographic Details
Published in:Scientific reports 2024-06, Vol.14 (1), p.14263-9, Article 14263
Main Authors: Almotairi, Sultan, Badr, Elsayed, Abdelbaky, Ibrahim, Elhakeem, Mohamed, Abdul Salam, Mustafa
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by
cites cdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433
container_end_page 9
container_issue 1
container_start_page 14263
container_title Scientific reports
container_volume 14
creator Almotairi, Sultan
Badr, Elsayed
Abdelbaky, Ibrahim
Elhakeem, Mohamed
Abdul Salam, Mustafa
description Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.
doi_str_mv 10.1038/s41598-024-63446-5
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_1400f347837541c3b610ae84ded9b653</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_1400f347837541c3b610ae84ded9b653</doaj_id><sourcerecordid>3070838655</sourcerecordid><originalsourceid>FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</originalsourceid><addsrcrecordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuLxV5wTQiuglapyAM6WY0-2XiVxsJNK--_xbtrScsAXWzOvn5mx36J4C-QCCFMfEwfRqIpQXknGuazEi-KUEi4qyih9-eR8UpyntCN5CdpwaF4XJ0w1hFJVnxY_Lvdt9K6coxlTF-KAsdrc3JRDcNiXOVAaa5doZiyniM7b2YexDF054TR7h-UtDqHfz96WU5hxnL3p3xSvOtMnPL_fz4pfX7_83FxW19-_XW0-X1eWUzpXIJWpUVgCThrOVC5ElWklbaUhEhruQCE4BQiS1pS3KJBzzlyX94YzdlZcrVwXzE5P0Q8m7nUwXh8DIW61ibmzHjVwQjrGa8VqwcGyVgIxqLhD17RSHFifVta0tAM6myeJpn8GfZ4Z_a3ehjsNAA0BVmfCh3tCDL8XTLMefLLY92bEsCTNSE0UU1KILH3_j3QXljjmtzqqgNNakayiq8rGkFLE7rEbIPrgAb16QGcP6KMH9AH97ukcj1cefjwL2CpIOTVuMf6t_R_sHxGlu5w</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>3070142780</pqid></control><display><type>article</type><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><source>Open Access: PubMed Central</source><source>Free Full-Text Journals in Chemistry</source><source>Springer Nature - nature.com Journals - Fully Open Access</source><source>ProQuest Publicly Available Content database</source><creator>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</creator><creatorcontrib>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</creatorcontrib><description>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</description><identifier>ISSN: 2045-2322</identifier><identifier>EISSN: 2045-2322</identifier><identifier>DOI: 10.1038/s41598-024-63446-5</identifier><identifier>PMID: 38902287</identifier><language>eng</language><publisher>London: Nature Publishing Group UK</publisher><subject>631/45 ; 631/45/611 ; Bioinformatics ; Computational Biology - methods ; Computer applications ; Convolutional neural networks (CNNs) ; Correlation coefficient ; Deep learning ; Drug design ; Drug development ; Hemolysis ; Hemolysis - drug effects ; Humanities and Social Sciences ; Humans ; multidisciplinary ; Neural networks ; Neural Networks, Computer ; Peptides ; Peptides - chemistry ; Predictions ; Science ; Science (multidisciplinary) ; Transformers</subject><ispartof>Scientific reports, 2024-06, Vol.14 (1), p.14263-9, Article 14263</ispartof><rights>The Author(s) 2024</rights><rights>2024. The Author(s).</rights><rights>The Author(s) 2024. This work is published under http://creativecommons.org/licenses/by/4.0/ (the “License”). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><cites>FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</cites></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/3070142780/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/3070142780?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>230,314,727,780,784,885,25753,27924,27925,37012,37013,44590,53791,53793,75126</link.rule.ids><backlink>$$Uhttps://www.ncbi.nlm.nih.gov/pubmed/38902287$$D View this record in MEDLINE/PubMed$$Hfree_for_read</backlink></links><search><creatorcontrib>Almotairi, Sultan</creatorcontrib><creatorcontrib>Badr, Elsayed</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Elhakeem, Mohamed</creatorcontrib><creatorcontrib>Abdul Salam, Mustafa</creatorcontrib><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><title>Scientific reports</title><addtitle>Sci Rep</addtitle><addtitle>Sci Rep</addtitle><description>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</description><subject>631/45</subject><subject>631/45/611</subject><subject>Bioinformatics</subject><subject>Computational Biology - methods</subject><subject>Computer applications</subject><subject>Convolutional neural networks (CNNs)</subject><subject>Correlation coefficient</subject><subject>Deep learning</subject><subject>Drug design</subject><subject>Drug development</subject><subject>Hemolysis</subject><subject>Hemolysis - drug effects</subject><subject>Humanities and Social Sciences</subject><subject>Humans</subject><subject>multidisciplinary</subject><subject>Neural networks</subject><subject>Neural Networks, Computer</subject><subject>Peptides</subject><subject>Peptides - chemistry</subject><subject>Predictions</subject><subject>Science</subject><subject>Science (multidisciplinary)</subject><subject>Transformers</subject><issn>2045-2322</issn><issn>2045-2322</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2024</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNp9kk1v1DAQhiMEolXpH-CAInHhkuLxV5wTQiuglapyAM6WY0-2XiVxsJNK--_xbtrScsAXWzOvn5mx36J4C-QCCFMfEwfRqIpQXknGuazEi-KUEi4qyih9-eR8UpyntCN5CdpwaF4XJ0w1hFJVnxY_Lvdt9K6coxlTF-KAsdrc3JRDcNiXOVAaa5doZiyniM7b2YexDF054TR7h-UtDqHfz96WU5hxnL3p3xSvOtMnPL_fz4pfX7_83FxW19-_XW0-X1eWUzpXIJWpUVgCThrOVC5ElWklbaUhEhruQCE4BQiS1pS3KJBzzlyX94YzdlZcrVwXzE5P0Q8m7nUwXh8DIW61ibmzHjVwQjrGa8VqwcGyVgIxqLhD17RSHFifVta0tAM6myeJpn8GfZ4Z_a3ehjsNAA0BVmfCh3tCDL8XTLMefLLY92bEsCTNSE0UU1KILH3_j3QXljjmtzqqgNNakayiq8rGkFLE7rEbIPrgAb16QGcP6KMH9AH97ukcj1cefjwL2CpIOTVuMf6t_R_sHxGlu5w</recordid><startdate>20240620</startdate><enddate>20240620</enddate><creator>Almotairi, Sultan</creator><creator>Badr, Elsayed</creator><creator>Abdelbaky, Ibrahim</creator><creator>Elhakeem, Mohamed</creator><creator>Abdul Salam, Mustafa</creator><general>Nature Publishing Group UK</general><general>Nature Publishing Group</general><general>Nature Portfolio</general><scope>C6C</scope><scope>CGR</scope><scope>CUY</scope><scope>CVF</scope><scope>ECM</scope><scope>EIF</scope><scope>NPM</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>3V.</scope><scope>7X7</scope><scope>7XB</scope><scope>88A</scope><scope>88E</scope><scope>88I</scope><scope>8FE</scope><scope>8FH</scope><scope>8FI</scope><scope>8FJ</scope><scope>8FK</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BBNVY</scope><scope>BENPR</scope><scope>BHPHI</scope><scope>CCPQU</scope><scope>DWQXO</scope><scope>FYUFA</scope><scope>GHDGH</scope><scope>GNUQQ</scope><scope>HCIFZ</scope><scope>K9.</scope><scope>LK8</scope><scope>M0S</scope><scope>M1P</scope><scope>M2P</scope><scope>M7P</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>Q9U</scope><scope>7X8</scope><scope>5PM</scope><scope>DOA</scope></search><sort><creationdate>20240620</creationdate><title>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</title><author>Almotairi, Sultan ; Badr, Elsayed ; Abdelbaky, Ibrahim ; Elhakeem, Mohamed ; Abdul Salam, Mustafa</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2024</creationdate><topic>631/45</topic><topic>631/45/611</topic><topic>Bioinformatics</topic><topic>Computational Biology - methods</topic><topic>Computer applications</topic><topic>Convolutional neural networks (CNNs)</topic><topic>Correlation coefficient</topic><topic>Deep learning</topic><topic>Drug design</topic><topic>Drug development</topic><topic>Hemolysis</topic><topic>Hemolysis - drug effects</topic><topic>Humanities and Social Sciences</topic><topic>Humans</topic><topic>multidisciplinary</topic><topic>Neural networks</topic><topic>Neural Networks, Computer</topic><topic>Peptides</topic><topic>Peptides - chemistry</topic><topic>Predictions</topic><topic>Science</topic><topic>Science (multidisciplinary)</topic><topic>Transformers</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Almotairi, Sultan</creatorcontrib><creatorcontrib>Badr, Elsayed</creatorcontrib><creatorcontrib>Abdelbaky, Ibrahim</creatorcontrib><creatorcontrib>Elhakeem, Mohamed</creatorcontrib><creatorcontrib>Abdul Salam, Mustafa</creatorcontrib><collection>Springer Nature OA Free Journals</collection><collection>Medline</collection><collection>MEDLINE</collection><collection>MEDLINE (Ovid)</collection><collection>MEDLINE</collection><collection>MEDLINE</collection><collection>PubMed</collection><collection>CrossRef</collection><collection>ProQuest Central (Corporate)</collection><collection>Health &amp; Medical Collection (Proquest)</collection><collection>ProQuest Central (purchase pre-March 2016)</collection><collection>Biology Database (Alumni Edition)</collection><collection>Medical Database (Alumni Edition)</collection><collection>Science Database (Alumni Edition)</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Natural Science Collection</collection><collection>Hospital Premium Collection</collection><collection>Hospital Premium Collection (Alumni Edition)</collection><collection>ProQuest Central (Alumni) (purchase pre-March 2016)</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>Biological Science Collection</collection><collection>AUTh Library subscriptions: ProQuest Central</collection><collection>ProQuest Natural Science Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Central</collection><collection>Health Research Premium Collection</collection><collection>Health Research Premium Collection (Alumni)</collection><collection>ProQuest Central Student</collection><collection>SciTech Premium Collection</collection><collection>ProQuest Health &amp; Medical Complete (Alumni)</collection><collection>ProQuest Biological Science Collection</collection><collection>Health &amp; Medical Collection (Alumni Edition)</collection><collection>Medical Database</collection><collection>ProQuest Science Journals</collection><collection>ProQuest Biological Science Journals</collection><collection>ProQuest Publicly Available Content database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>ProQuest Central Basic</collection><collection>MEDLINE - Academic</collection><collection>PubMed Central (Full Participant titles)</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Scientific reports</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Almotairi, Sultan</au><au>Badr, Elsayed</au><au>Abdelbaky, Ibrahim</au><au>Elhakeem, Mohamed</au><au>Abdul Salam, Mustafa</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential</atitle><jtitle>Scientific reports</jtitle><stitle>Sci Rep</stitle><addtitle>Sci Rep</addtitle><date>2024-06-20</date><risdate>2024</risdate><volume>14</volume><issue>1</issue><spage>14263</spage><epage>9</epage><pages>14263-9</pages><artnum>14263</artnum><issn>2045-2322</issn><eissn>2045-2322</eissn><abstract>Hemolysis is a crucial factor in various biomedical and pharmaceutical contexts, driving our interest in developing advanced computational techniques for precise prediction. Our proposed approach takes advantage of the unique capabilities of convolutional neural networks (CNNs) and transformers to detect complex patterns inherent in the data. The integration of CNN and transformers' attention mechanisms allows for the extraction of relevant information, leading to accurate predictions of hemolytic potential. The proposed method was trained on three distinct data sets of peptide sequences known as recurrent neural network-hemolytic (RNN-Hem), Hlppredfuse, and Combined. Our computational results demonstrated the superior efficacy of our models compared to existing methods. The proposed approach demonstrated impressive Matthews correlation coefficients of 0.5962, 0.9111, and 0.7788 respectively, indicating its effectiveness in predicting hemolytic activity. With its potential to guide experimental efforts in peptide design and drug development, this method holds great promise for practical applications. Integrating CNNs and transformers proves to be a powerful tool in the fields of bioinformatics and therapeutic research, highlighting their potential to drive advancement in this area.</abstract><cop>London</cop><pub>Nature Publishing Group UK</pub><pmid>38902287</pmid><doi>10.1038/s41598-024-63446-5</doi><tpages>9</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2045-2322
ispartof Scientific reports, 2024-06, Vol.14 (1), p.14263-9, Article 14263
issn 2045-2322
2045-2322
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_1400f347837541c3b610ae84ded9b653
source Open Access: PubMed Central; Free Full-Text Journals in Chemistry; Springer Nature - nature.com Journals - Fully Open Access; ProQuest Publicly Available Content database
subjects 631/45
631/45/611
Bioinformatics
Computational Biology - methods
Computer applications
Convolutional neural networks (CNNs)
Correlation coefficient
Deep learning
Drug design
Drug development
Hemolysis
Hemolysis - drug effects
Humanities and Social Sciences
Humans
multidisciplinary
Neural networks
Neural Networks, Computer
Peptides
Peptides - chemistry
Predictions
Science
Science (multidisciplinary)
Transformers
title Hybrid transformer-CNN model for accurate prediction of peptide hemolytic potential
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2024-12-25T14%3A29%3A05IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=Hybrid%20transformer-CNN%20model%20for%20accurate%20prediction%20of%20peptide%20hemolytic%20potential&rft.jtitle=Scientific%20reports&rft.au=Almotairi,%20Sultan&rft.date=2024-06-20&rft.volume=14&rft.issue=1&rft.spage=14263&rft.epage=9&rft.pages=14263-9&rft.artnum=14263&rft.issn=2045-2322&rft.eissn=2045-2322&rft_id=info:doi/10.1038/s41598-024-63446-5&rft_dat=%3Cproquest_doaj_%3E3070838655%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c422t-168a7e5c01d6a438acc28ab62b6a06194d18e1d81e162724be5e4443df5e49433%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=3070142780&rft_id=info:pmid/38902287&rfr_iscdi=true