Loading…
Topological electronics
Within the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exist...
Saved in:
Published in: | Communications physics 2021-04, Vol.4 (1), p.1-12, Article 70 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Within the broad and deep field of topological materials, there are an ever-increasing number of materials that harbor topological phases. While condensed matter physics continues to probe the exotic physical properties resulting from the existence of topological phases in new materials, there exists a suite of “well-known” topological materials in which the physical properties are well-characterized, such as Bi
2
Se
3
and Bi
2
Te
3
. In this context, it is then appropriate to ask if the unique properties of well-explored topological materials may have a role to play in applications that form the basis of a new paradigm in information processing devices and architectures. To accomplish such a transition from physical novelty to application based material, the potential of topological materials must be disseminated beyond the reach of condensed matter to engender interest in diverse areas such as: electrical engineering, materials science, and applied physics. Accordingly, in this review, we assess the state of current electronic device applications and contemplate the future prospects of topological materials from an applied perspective. More specifically, we will review the application of topological materials to the general areas of electronic and magnetic device technologies with the goal of elucidating the potential utility of well-characterized topological materials in future information processing applications.
Topological materials are extensively studied in condensed matter physics and several have been studied to the point where it is now time to ask if these unique materials have a role to play in next generation technologies. The author reviews the current status of well-characterized topological materials such as Bi
2
Se
3
for electronic device applications, focusing on selected technological aspects and their promise for engineering applications. |
---|---|
ISSN: | 2399-3650 2399-3650 |
DOI: | 10.1038/s42005-021-00569-5 |