Loading…

Excessive fructose intake inhibits skeletal development in adolescent rats via gut microbiota and energy metabolism

Excessive fructose intake from desserts and beverages may influence bone development among adolescents. The gut microbiota (GM) and energy metabolism play important roles in bone development. In this study, 40 female adolescent rats were randomly assigned to the control group, the fructose group wit...

Full description

Saved in:
Bibliographic Details
Published in:Frontiers in microbiology 2022-09, Vol.13, p.952892-952892
Main Authors: Gao, Tianlin, Tian, Chunyan, Tian, Ge, Ma, Li, Xu, Lili, Liu, Wendong, Cai, Jing, Zhong, Feng, Zhang, Huaqi, Ma, Aiguo
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Excessive fructose intake from desserts and beverages may influence bone development among adolescents. The gut microbiota (GM) and energy metabolism play important roles in bone development. In this study, 40 female adolescent rats were randomly assigned to the control group, the fructose group with two concentrations, and the glucose group as the positive control group. After 10 weeks, serum glucose and lipids were detected by means of an automatic analyzer, and the bone microstructure was analyzed by Micro-CT. Then, the GM was determined via 16S rRNA sequencing analysis, and energy metabolism was detected by measuring serum carbohydrate metabolites. At last, bone metabolism markers were measured via ELISA kits. The results showed that excessive fructose intake could increase body weight and influence the glucolipid metabolism of female adolescent rats. Meanwhile, the bone microstructures were impaired with excessive fructose intake. Mechanistically, excessive fructose intake shifted the GM of rats with the decrease of Lachnospiraceae, Ruminococcaceae , and increase of Allobaculum, Lachnospiraceae. Energy metabolism analysis suggested that most metabolites of fructose did not enter the tricarboxylic acid cycle to provide energy for the body’s development. Furthermore, serum bone metabolism markers showed that excessive fructose intake could decrease both bone formation and resorption. Our results suggested that excessive fructose intake could inhibit skeletal development in adolescents. One potential mechanism might be that it affected the intestinal microbiota homeostasis in the juvenile body, thus changing the energy metabolism level, and ultimately affecting the bone metabolic balance.
ISSN:1664-302X
1664-302X
DOI:10.3389/fmicb.2022.952892