Loading…
BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM
In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using...
Saved in:
Published in: | Abstract and Applied Analysis 1996, Vol.1996 (3), p.291-304 |
---|---|
Main Authors: | , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973 |
---|---|
cites | |
container_end_page | 304 |
container_issue | 3 |
container_start_page | 291 |
container_title | Abstract and Applied Analysis |
container_volume | 1996 |
creator | Borisovich, A. Y. Marzantowicz, W. |
description | In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc. |
doi_str_mv | 10.1155/S1085337596000152 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_199612_201609010001_201609010001_291_304</airiti_id><doaj_id>oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51</doaj_id><sourcerecordid>28159531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</originalsourceid><addsrcrecordid>eNplUU2P0zAQjRBILIUfwC0nbgGPv2LfyIaUWsrHkqZInKxp4qBU2c2StAf-Pe62Wgk4zfjNe2_GM0HwHshHACE-bYEowVgstCSEgKAvghuQKo4IJ_qlz305OtdfB2-W5eA5LOb8JihuzXpXp0ljqjKs1mGzycLs2858T2qTlE1YmNIUSR6assnqdZJmW5-GSbj58aWuiizdJKVJt-FdXd3mWfE2eNXjuLh317gKduusSTdRXn01aZJHyKmkUc-UVK1WMdAOO0Kdn1RR1iE6p5C0ai_3e89sNcaSI1JwEjURMWd7SnTMVoG5-HYTHuzjPNzj_NtOONgnYJp_WpyPQzs6C5x4aylJLB0noFBS3QnHXA-87QV4r88Xr8d5Orj26E7tOHR_maa7_IpeAyJaIFzHVBK_9VXw4dni18ktR3s_LK0bR3xw02mxVIHQgp17wYXYztOyzK5_bgPEnu9o_7uj1-QXDQ7zcBzsYTrND3659o4SkP5zwvMsaC2B2idIEzhr_3losIxw9geVZptP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28159531</pqid></control><display><type>article</type><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><source>Wiley-Blackwell Open Access Collection</source><source>IngentaConnect Journals</source><creator>Borisovich, A. Y. ; Marzantowicz, W.</creator><creatorcontrib>Borisovich, A. Y. ; Marzantowicz, W.</creatorcontrib><description>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/S1085337596000152</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><subject>53A10 ; 53C10 ; 58E12 ; bifurcation ; Equivariant Plateau problem ; fluid interface</subject><ispartof>Abstract and Applied Analysis, 1996, Vol.1996 (3), p.291-304</ispartof><rights>Copyright 1996 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Borisovich, A. Y.</creatorcontrib><creatorcontrib>Marzantowicz, W.</creatorcontrib><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><title>Abstract and Applied Analysis</title><description>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</description><subject>53A10</subject><subject>53C10</subject><subject>58E12</subject><subject>bifurcation</subject><subject>Equivariant Plateau problem</subject><subject>fluid interface</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUU2P0zAQjRBILIUfwC0nbgGPv2LfyIaUWsrHkqZInKxp4qBU2c2StAf-Pe62Wgk4zfjNe2_GM0HwHshHACE-bYEowVgstCSEgKAvghuQKo4IJ_qlz305OtdfB2-W5eA5LOb8JihuzXpXp0ljqjKs1mGzycLs2858T2qTlE1YmNIUSR6assnqdZJmW5-GSbj58aWuiizdJKVJt-FdXd3mWfE2eNXjuLh317gKduusSTdRXn01aZJHyKmkUc-UVK1WMdAOO0Kdn1RR1iE6p5C0ai_3e89sNcaSI1JwEjURMWd7SnTMVoG5-HYTHuzjPNzj_NtOONgnYJp_WpyPQzs6C5x4aylJLB0noFBS3QnHXA-87QV4r88Xr8d5Orj26E7tOHR_maa7_IpeAyJaIFzHVBK_9VXw4dni18ktR3s_LK0bR3xw02mxVIHQgp17wYXYztOyzK5_bgPEnu9o_7uj1-QXDQ7zcBzsYTrND3659o4SkP5zwvMsaC2B2idIEzhr_3losIxw9geVZptP</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Borisovich, A. Y.</creator><creator>Marzantowicz, W.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>1996</creationdate><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><author>Borisovich, A. Y. ; Marzantowicz, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>53A10</topic><topic>53C10</topic><topic>58E12</topic><topic>bifurcation</topic><topic>Equivariant Plateau problem</topic><topic>fluid interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisovich, A. Y.</creatorcontrib><creatorcontrib>Marzantowicz, W.</creatorcontrib><collection>Airiti Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisovich, A. Y.</au><au>Marzantowicz, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>1996</date><risdate>1996</risdate><volume>1996</volume><issue>3</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/S1085337596000152</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 1085-3375 |
ispartof | Abstract and Applied Analysis, 1996, Vol.1996 (3), p.291-304 |
issn | 1085-3375 1687-0409 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51 |
source | Wiley-Blackwell Open Access Collection; IngentaConnect Journals |
subjects | 53A10 53C10 58E12 bifurcation Equivariant Plateau problem fluid interface |
title | BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIFURCATION%20OF%20THE%20EQUIVARIANT%20MINIMAL%20INTERFACES%20IN%20A%20HYDROMECHANICS%20PROBLEM&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Borisovich,%20A.%20Y.&rft.date=1996&rft.volume=1996&rft.issue=3&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/S1085337596000152&rft_dat=%3Cproquest_doaj_%3E28159531%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28159531&rft_id=info:pmid/&rft_airiti_id=P20160825001_199612_201609010001_201609010001_291_304&rfr_iscdi=true |