Loading…

BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM

In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using...

Full description

Saved in:
Bibliographic Details
Published in:Abstract and Applied Analysis 1996, Vol.1996 (3), p.291-304
Main Authors: Borisovich, A. Y., Marzantowicz, W.
Format: Article
Language:English
Subjects:
Citations: Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973
cites
container_end_page 304
container_issue 3
container_start_page 291
container_title Abstract and Applied Analysis
container_volume 1996
creator Borisovich, A. Y.
Marzantowicz, W.
description In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.
doi_str_mv 10.1155/S1085337596000152
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><airiti_id>P20160825001_199612_201609010001_201609010001_291_304</airiti_id><doaj_id>oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51</doaj_id><sourcerecordid>28159531</sourcerecordid><originalsourceid>FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</originalsourceid><addsrcrecordid>eNplUU2P0zAQjRBILIUfwC0nbgGPv2LfyIaUWsrHkqZInKxp4qBU2c2StAf-Pe62Wgk4zfjNe2_GM0HwHshHACE-bYEowVgstCSEgKAvghuQKo4IJ_qlz305OtdfB2-W5eA5LOb8JihuzXpXp0ljqjKs1mGzycLs2858T2qTlE1YmNIUSR6assnqdZJmW5-GSbj58aWuiizdJKVJt-FdXd3mWfE2eNXjuLh317gKduusSTdRXn01aZJHyKmkUc-UVK1WMdAOO0Kdn1RR1iE6p5C0ai_3e89sNcaSI1JwEjURMWd7SnTMVoG5-HYTHuzjPNzj_NtOONgnYJp_WpyPQzs6C5x4aylJLB0noFBS3QnHXA-87QV4r88Xr8d5Orj26E7tOHR_maa7_IpeAyJaIFzHVBK_9VXw4dni18ktR3s_LK0bR3xw02mxVIHQgp17wYXYztOyzK5_bgPEnu9o_7uj1-QXDQ7zcBzsYTrND3659o4SkP5zwvMsaC2B2idIEzhr_3losIxw9geVZptP</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>28159531</pqid></control><display><type>article</type><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><source>Wiley-Blackwell Open Access Collection</source><source>IngentaConnect Journals</source><creator>Borisovich, A. Y. ; Marzantowicz, W.</creator><creatorcontrib>Borisovich, A. Y. ; Marzantowicz, W.</creatorcontrib><description>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</description><identifier>ISSN: 1085-3375</identifier><identifier>EISSN: 1687-0409</identifier><identifier>DOI: 10.1155/S1085337596000152</identifier><language>eng</language><publisher>Hindawi Limiteds</publisher><subject>53A10 ; 53C10 ; 58E12 ; bifurcation ; Equivariant Plateau problem ; fluid interface</subject><ispartof>Abstract and Applied Analysis, 1996, Vol.1996 (3), p.291-304</ispartof><rights>Copyright 1996 Hindawi Publishing Corporation</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</citedby></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><link.rule.ids>230,314,780,784,885,4022,27921,27922,27923</link.rule.ids></links><search><creatorcontrib>Borisovich, A. Y.</creatorcontrib><creatorcontrib>Marzantowicz, W.</creatorcontrib><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><title>Abstract and Applied Analysis</title><description>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</description><subject>53A10</subject><subject>53C10</subject><subject>58E12</subject><subject>bifurcation</subject><subject>Equivariant Plateau problem</subject><subject>fluid interface</subject><issn>1085-3375</issn><issn>1687-0409</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>1996</creationdate><recordtype>article</recordtype><sourceid>DOA</sourceid><recordid>eNplUU2P0zAQjRBILIUfwC0nbgGPv2LfyIaUWsrHkqZInKxp4qBU2c2StAf-Pe62Wgk4zfjNe2_GM0HwHshHACE-bYEowVgstCSEgKAvghuQKo4IJ_qlz305OtdfB2-W5eA5LOb8JihuzXpXp0ljqjKs1mGzycLs2858T2qTlE1YmNIUSR6assnqdZJmW5-GSbj58aWuiizdJKVJt-FdXd3mWfE2eNXjuLh317gKduusSTdRXn01aZJHyKmkUc-UVK1WMdAOO0Kdn1RR1iE6p5C0ai_3e89sNcaSI1JwEjURMWd7SnTMVoG5-HYTHuzjPNzj_NtOONgnYJp_WpyPQzs6C5x4aylJLB0noFBS3QnHXA-87QV4r88Xr8d5Orj26E7tOHR_maa7_IpeAyJaIFzHVBK_9VXw4dni18ktR3s_LK0bR3xw02mxVIHQgp17wYXYztOyzK5_bgPEnu9o_7uj1-QXDQ7zcBzsYTrND3659o4SkP5zwvMsaC2B2idIEzhr_3losIxw9geVZptP</recordid><startdate>1996</startdate><enddate>1996</enddate><creator>Borisovich, A. Y.</creator><creator>Marzantowicz, W.</creator><general>Hindawi Limiteds</general><general>Hindawi Publishing Corporation</general><general>Hindawi Limited</general><scope>188</scope><scope>AAYXX</scope><scope>CITATION</scope><scope>7SC</scope><scope>8FD</scope><scope>JQ2</scope><scope>L7M</scope><scope>L~C</scope><scope>L~D</scope><scope>DOA</scope></search><sort><creationdate>1996</creationdate><title>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</title><author>Borisovich, A. Y. ; Marzantowicz, W.</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>1996</creationdate><topic>53A10</topic><topic>53C10</topic><topic>58E12</topic><topic>bifurcation</topic><topic>Equivariant Plateau problem</topic><topic>fluid interface</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Borisovich, A. Y.</creatorcontrib><creatorcontrib>Marzantowicz, W.</creatorcontrib><collection>Airiti Library</collection><collection>CrossRef</collection><collection>Computer and Information Systems Abstracts</collection><collection>Technology Research Database</collection><collection>ProQuest Computer Science Collection</collection><collection>Advanced Technologies Database with Aerospace</collection><collection>Computer and Information Systems Abstracts – Academic</collection><collection>Computer and Information Systems Abstracts Professional</collection><collection>Directory of Open Access Journals (Open Access)</collection><jtitle>Abstract and Applied Analysis</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Borisovich, A. Y.</au><au>Marzantowicz, W.</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM</atitle><jtitle>Abstract and Applied Analysis</jtitle><date>1996</date><risdate>1996</risdate><volume>1996</volume><issue>3</issue><spage>291</spage><epage>304</epage><pages>291-304</pages><issn>1085-3375</issn><eissn>1687-0409</eissn><abstract>In this work we study a deformation of the minimal interface of two fluids in a vertical tube under the presence of gravitation. We show that a symmetry of the base of tube let us to apply a method developed earlier by the first author and based on the Crandall‐Rabinowitz bifurcation theorem. Using the natural symmetry of the corresponding variational problem defined by a symmetry of region and restricting the functional to spaces of invariant functions we show the existence of bifurcation, and describe its local picture, for interfaces parametrized by the square and disc.</abstract><pub>Hindawi Limiteds</pub><doi>10.1155/S1085337596000152</doi><tpages>14</tpages><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 1085-3375
ispartof Abstract and Applied Analysis, 1996, Vol.1996 (3), p.291-304
issn 1085-3375
1687-0409
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_14082366076e4018a629d5e3ef14cf51
source Wiley-Blackwell Open Access Collection; IngentaConnect Journals
subjects 53A10
53C10
58E12
bifurcation
Equivariant Plateau problem
fluid interface
title BIFURCATION OF THE EQUIVARIANT MINIMAL INTERFACES IN A HYDROMECHANICS PROBLEM
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-01-09T17%3A04%3A56IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=BIFURCATION%20OF%20THE%20EQUIVARIANT%20MINIMAL%20INTERFACES%20IN%20A%20HYDROMECHANICS%20PROBLEM&rft.jtitle=Abstract%20and%20Applied%20Analysis&rft.au=Borisovich,%20A.%20Y.&rft.date=1996&rft.volume=1996&rft.issue=3&rft.spage=291&rft.epage=304&rft.pages=291-304&rft.issn=1085-3375&rft.eissn=1687-0409&rft_id=info:doi/10.1155/S1085337596000152&rft_dat=%3Cproquest_doaj_%3E28159531%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-a4262-f3868c98712dad02e168823daaee8a0c8b6bb426c9a764aa21e6a905743b20973%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=28159531&rft_id=info:pmid/&rft_airiti_id=P20160825001_199612_201609010001_201609010001_291_304&rfr_iscdi=true