Loading…
Toward Quantifying Oil Contamination in Vegetated Areas Using Very High Spatial and Spectral Resolution Imagery
Recent remote sensing studies have suggested exploiting vegetation optical properties for assessing oil contamination, especially total petroleum hydrocarbons (TPH) in vegetated areas. Methods based on the tracking of alterations in leaf biochemistry have been proposed for detecting and quantifying...
Saved in:
Published in: | Remote sensing (Basel, Switzerland) Switzerland), 2019-10, Vol.11 (19), p.2241 |
---|---|
Main Authors: | , , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Recent remote sensing studies have suggested exploiting vegetation optical properties for assessing oil contamination, especially total petroleum hydrocarbons (TPH) in vegetated areas. Methods based on the tracking of alterations in leaf biochemistry have been proposed for detecting and quantifying TPH under controlled and field conditions. In this study, we expand their use to airborne imagery, in order to monitor oil contamination at a larger scale. Airborne hyperspectral images with very high spatial and spectral resolutions were acquired over an industrial site with oil-contamination (mud pits) and control sites both colonized by Rubus fruticosus L. The method of oil detection exploiting 14 vegetation indices succeeded in classifying the sites in the case of high TPH contamination (overall accuracy ≥ 91.8%). Two methods, based on either the PROSAIL (PROSPECT + SAIL) radiative transfer model or elastic net multiple regression, were also developed for quantifying TPH. Both methods were tested on reflectance measurements in the field, at leaf and canopy scales, and on the image, and achieved accurate predictions of TPH concentrations (RMSE ≤ 3.28 g/kg−1 and RPD ≥ 1.90). The methods were validated on additional sites and open up promising perspectives of operational application for oil and gas companies, with the emergence of new hyperspectral satellite sensors. |
---|---|
ISSN: | 2072-4292 2072-4292 |
DOI: | 10.3390/rs11192241 |