Loading…
The Unicellular, Parasitic Fungi, Sanchytriomycota, Possess a DNA Sequence Possibly Encoding a Long Tubulin Polymerization Promoting Protein (TPPP) but Not a Fungal-Type One
The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-mo...
Saved in:
Published in: | Microorganisms (Basel) 2023-08, Vol.11 (8), p.2029 |
---|---|
Main Author: | |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | The unicellular, parasitic fungi of the phylum Sanchytriomycota (sanchytrids) were discovered a few years ago. These unusual chytrid-like fungi parasitize algae. The zoospores of the species of the phylum contain an extremely long kinetosome composed of microtubular singlets or doublets and a non-motile pseudocilium (i.e., a reduced posterior flagellum). Fungi provide an ideal opportunity to test and confirm the correlation between the occurrence of flagellar proteins (the ciliome) and that of the eukaryotic cilium/flagellum since the flagellum occurs in the early-branching phyla and not in terrestrial fungi. Tubulin polymerization promoting protein (TPPP)-like proteins, which contain a p25alpha domain, were also suggested to belong to the ciliome and are present in flagellated fungi. Although sanchytrids have lost many of the flagellar proteins, here it is shown that they possess a DNA sequence possibly encoding long (animal-type) TPPP, but not the fungal-type one characteristic of chytrid fungi. Phylogenetic analysis of p25alpha domains placed sanchytrids into a sister position to Blastocladiomycota, similarly to species phylogeny, with maximal support. |
---|---|
ISSN: | 2076-2607 2076-2607 |
DOI: | 10.3390/microorganisms11082029 |