Loading…

Extending Genetic Algorithms with Biological Life-Cycle Dynamics

In this paper, we aim to enhance genetic algorithms (GAs) by integrating a dynamic model based on biological life cycles. This study addresses the challenge of maintaining diversity and adaptability in GAs by incorporating stages of birth, growth, reproduction, and death into the algorithm's fr...

Full description

Saved in:
Bibliographic Details
Published in:Biomimetics (Basel, Switzerland) Switzerland), 2024-08, Vol.9 (8), p.476
Main Authors: Felix-Saul, J C, García-Valdez, Mario, Merelo Guervós, Juan J, Castillo, Oscar
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:In this paper, we aim to enhance genetic algorithms (GAs) by integrating a dynamic model based on biological life cycles. This study addresses the challenge of maintaining diversity and adaptability in GAs by incorporating stages of birth, growth, reproduction, and death into the algorithm's framework. We consider an asynchronous execution of life cycle stages to individuals in the population, ensuring a steady-state evolution that preserves high-quality solutions while maintaining diversity. Experimental results demonstrate that the proposed extension outperforms traditional GAs and is as good or better than other well-known and well established algorithms like PSO and EvoSpace in various benchmark problems, particularly regarding convergence speed and solution qu/ality. The study concludes that incorporating biological life-cycle dynamics into GAs enhances their robustness and efficiency, offering a promising direction for future research in evolutionary computation.
ISSN:2313-7673
2313-7673
DOI:10.3390/biomimetics9080476