Loading…

A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications

Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composi...

Full description

Saved in:
Bibliographic Details
Published in:Metals (Basel ) 2021-05, Vol.11 (5), p.818
Main Authors: Richter, Jonas, Kuhtz, Moritz, Hornig, Andreas, Harhash, Mohamed, Palkowski, Heinz, Gude, Maik
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
cited_by cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523
cites cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523
container_end_page
container_issue 5
container_start_page 818
container_title Metals (Basel )
container_volume 11
creator Richter, Jonas
Kuhtz, Moritz
Hornig, Andreas
Harhash, Mohamed
Palkowski, Heinz
Gude, Maik
description Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.
doi_str_mv 10.3390/met11050818
format article
fullrecord <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3</doaj_id><sourcerecordid>2532163305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymqy-djssRQ_CvXjoOeQZCd2y7ZZkxSqv97UinQuM7x582aGVxSXBN9Q2uDbNSRCMMeSyJNiVOGal6zG5PSoPi8mMa5wDlkJ3DSjAqboqdtBi563awid1X15txtytYZN0j16grT0LUoezZY6aJty6xv2cGa--v4rT6H5JsNOW4jI-YBmQcclmg5Dn_VS5zfxojhzuo8w-cvj4v3-7m32WC5eHuaz6aK0VLBUakFAYsaYMdA4TggxUmJKrHBUCkpMzamrgTEtGdY605wFI5rKOCY4r-i4mB90W69Xashf6PClvO7UL-DDh9IhdbYHRVjVWgkNc4wzsK0xwkAtW8JJZV1Ls9bVQWsI_nMLMamV34ZNPl9VnFZEUIp5Zl0fWDb4GAO4_60Eq70t6sgW-gPO0X_U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532163305</pqid></control><display><type>article</type><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><source>Publicly Available Content Database</source><creator>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</creator><creatorcontrib>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</creatorcontrib><description>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11050818</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesives ; Bond strength ; Calibration ; Cantilever beams ; cohesive elements ; Crack propagation ; Design modifications ; Dissimilar materials ; Energy ; Energy release rate ; Experimental methods ; Galvanized steel ; Impact strength ; interface characterization ; Interfaces ; inverse material calibration ; Mechanical properties ; metal polymer sandwich ; Numerical analysis ; Parameter identification ; Parameter modification ; Polymers ; Polyolefins ; Propagation ; Shear tests ; Simulation ; Tension tests ; Test methods</subject><ispartof>Metals (Basel ), 2021-05, Vol.11 (5), p.818</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</citedby><cites>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</cites><orcidid>0000-0003-2653-7546 ; 0000-0003-1370-064X ; 0000-0001-9330-3913 ; 0000-0003-0152-348X ; 0000-0003-2596-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532163305/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532163305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Kuhtz, Moritz</creatorcontrib><creatorcontrib>Hornig, Andreas</creatorcontrib><creatorcontrib>Harhash, Mohamed</creatorcontrib><creatorcontrib>Palkowski, Heinz</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><title>Metals (Basel )</title><description>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</description><subject>Adhesives</subject><subject>Bond strength</subject><subject>Calibration</subject><subject>Cantilever beams</subject><subject>cohesive elements</subject><subject>Crack propagation</subject><subject>Design modifications</subject><subject>Dissimilar materials</subject><subject>Energy</subject><subject>Energy release rate</subject><subject>Experimental methods</subject><subject>Galvanized steel</subject><subject>Impact strength</subject><subject>interface characterization</subject><subject>Interfaces</subject><subject>inverse material calibration</subject><subject>Mechanical properties</subject><subject>metal polymer sandwich</subject><subject>Numerical analysis</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Propagation</subject><subject>Shear tests</subject><subject>Simulation</subject><subject>Tension tests</subject><subject>Test methods</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymqy-djssRQ_CvXjoOeQZCd2y7ZZkxSqv97UinQuM7x582aGVxSXBN9Q2uDbNSRCMMeSyJNiVOGal6zG5PSoPi8mMa5wDlkJ3DSjAqboqdtBi563awid1X15txtytYZN0j16grT0LUoezZY6aJty6xv2cGa--v4rT6H5JsNOW4jI-YBmQcclmg5Dn_VS5zfxojhzuo8w-cvj4v3-7m32WC5eHuaz6aK0VLBUakFAYsaYMdA4TggxUmJKrHBUCkpMzamrgTEtGdY605wFI5rKOCY4r-i4mB90W69Xashf6PClvO7UL-DDh9IhdbYHRVjVWgkNc4wzsK0xwkAtW8JJZV1Ls9bVQWsI_nMLMamV34ZNPl9VnFZEUIp5Zl0fWDb4GAO4_60Eq70t6sgW-gPO0X_U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Richter, Jonas</creator><creator>Kuhtz, Moritz</creator><creator>Hornig, Andreas</creator><creator>Harhash, Mohamed</creator><creator>Palkowski, Heinz</creator><creator>Gude, Maik</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2653-7546</orcidid><orcidid>https://orcid.org/0000-0003-1370-064X</orcidid><orcidid>https://orcid.org/0000-0001-9330-3913</orcidid><orcidid>https://orcid.org/0000-0003-0152-348X</orcidid><orcidid>https://orcid.org/0000-0003-2596-3391</orcidid></search><sort><creationdate>20210501</creationdate><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><author>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesives</topic><topic>Bond strength</topic><topic>Calibration</topic><topic>Cantilever beams</topic><topic>cohesive elements</topic><topic>Crack propagation</topic><topic>Design modifications</topic><topic>Dissimilar materials</topic><topic>Energy</topic><topic>Energy release rate</topic><topic>Experimental methods</topic><topic>Galvanized steel</topic><topic>Impact strength</topic><topic>interface characterization</topic><topic>Interfaces</topic><topic>inverse material calibration</topic><topic>Mechanical properties</topic><topic>metal polymer sandwich</topic><topic>Numerical analysis</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Propagation</topic><topic>Shear tests</topic><topic>Simulation</topic><topic>Tension tests</topic><topic>Test methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Kuhtz, Moritz</creatorcontrib><creatorcontrib>Hornig, Andreas</creatorcontrib><creatorcontrib>Harhash, Mohamed</creatorcontrib><creatorcontrib>Palkowski, Heinz</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science &amp; Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Jonas</au><au>Kuhtz, Moritz</au><au>Hornig, Andreas</au><au>Harhash, Mohamed</au><au>Palkowski, Heinz</au><au>Gude, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</atitle><jtitle>Metals (Basel )</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>818</spage><pages>818-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11050818</doi><orcidid>https://orcid.org/0000-0003-2653-7546</orcidid><orcidid>https://orcid.org/0000-0003-1370-064X</orcidid><orcidid>https://orcid.org/0000-0001-9330-3913</orcidid><orcidid>https://orcid.org/0000-0003-0152-348X</orcidid><orcidid>https://orcid.org/0000-0003-2596-3391</orcidid><oa>free_for_read</oa></addata></record>
fulltext fulltext
identifier ISSN: 2075-4701
ispartof Metals (Basel ), 2021-05, Vol.11 (5), p.818
issn 2075-4701
2075-4701
language eng
recordid cdi_doaj_primary_oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3
source Publicly Available Content Database
subjects Adhesives
Bond strength
Calibration
Cantilever beams
cohesive elements
Crack propagation
Design modifications
Dissimilar materials
Energy
Energy release rate
Experimental methods
Galvanized steel
Impact strength
interface characterization
Interfaces
inverse material calibration
Mechanical properties
metal polymer sandwich
Numerical analysis
Parameter identification
Parameter modification
Polymers
Polyolefins
Propagation
Shear tests
Simulation
Tension tests
Test methods
title A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications
url http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mixed%20Numerical-Experimental%20Method%20to%20Characterize%20Metal-Polymer%20Interfaces%20for%20Crash%20Applications&rft.jtitle=Metals%20(Basel%20)&rft.au=Richter,%20Jonas&rft.date=2021-05-01&rft.volume=11&rft.issue=5&rft.spage=818&rft.pages=818-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11050818&rft_dat=%3Cproquest_doaj_%3E2532163305%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532163305&rft_id=info:pmid/&rfr_iscdi=true