Loading…
A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications
Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composi...
Saved in:
Published in: | Metals (Basel ) 2021-05, Vol.11 (5), p.818 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
cited_by | cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523 |
---|---|
cites | cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523 |
container_end_page | |
container_issue | 5 |
container_start_page | 818 |
container_title | Metals (Basel ) |
container_volume | 11 |
creator | Richter, Jonas Kuhtz, Moritz Hornig, Andreas Harhash, Mohamed Palkowski, Heinz Gude, Maik |
description | Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results. |
doi_str_mv | 10.3390/met11050818 |
format | article |
fullrecord | <record><control><sourceid>proquest_doaj_</sourceid><recordid>TN_cdi_doaj_primary_oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3</recordid><sourceformat>XML</sourceformat><sourcesystem>PC</sourcesystem><doaj_id>oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3</doaj_id><sourcerecordid>2532163305</sourcerecordid><originalsourceid>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</originalsourceid><addsrcrecordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymqy-djssRQ_CvXjoOeQZCd2y7ZZkxSqv97UinQuM7x582aGVxSXBN9Q2uDbNSRCMMeSyJNiVOGal6zG5PSoPi8mMa5wDlkJ3DSjAqboqdtBi563awid1X15txtytYZN0j16grT0LUoezZY6aJty6xv2cGa--v4rT6H5JsNOW4jI-YBmQcclmg5Dn_VS5zfxojhzuo8w-cvj4v3-7m32WC5eHuaz6aK0VLBUakFAYsaYMdA4TggxUmJKrHBUCkpMzamrgTEtGdY605wFI5rKOCY4r-i4mB90W69Xashf6PClvO7UL-DDh9IhdbYHRVjVWgkNc4wzsK0xwkAtW8JJZV1Ls9bVQWsI_nMLMamV34ZNPl9VnFZEUIp5Zl0fWDb4GAO4_60Eq70t6sgW-gPO0X_U</addsrcrecordid><sourcetype>Open Website</sourcetype><iscdi>true</iscdi><recordtype>article</recordtype><pqid>2532163305</pqid></control><display><type>article</type><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><source>Publicly Available Content Database</source><creator>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</creator><creatorcontrib>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</creatorcontrib><description>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</description><identifier>ISSN: 2075-4701</identifier><identifier>EISSN: 2075-4701</identifier><identifier>DOI: 10.3390/met11050818</identifier><language>eng</language><publisher>Basel: MDPI AG</publisher><subject>Adhesives ; Bond strength ; Calibration ; Cantilever beams ; cohesive elements ; Crack propagation ; Design modifications ; Dissimilar materials ; Energy ; Energy release rate ; Experimental methods ; Galvanized steel ; Impact strength ; interface characterization ; Interfaces ; inverse material calibration ; Mechanical properties ; metal polymer sandwich ; Numerical analysis ; Parameter identification ; Parameter modification ; Polymers ; Polyolefins ; Propagation ; Shear tests ; Simulation ; Tension tests ; Test methods</subject><ispartof>Metals (Basel ), 2021-05, Vol.11 (5), p.818</ispartof><rights>2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/). Notwithstanding the ProQuest Terms and Conditions, you may use this content in accordance with the terms of the License.</rights><lds50>peer_reviewed</lds50><oa>free_for_read</oa><woscitedreferencessubscribed>false</woscitedreferencessubscribed><citedby>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</citedby><cites>FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</cites><orcidid>0000-0003-2653-7546 ; 0000-0003-1370-064X ; 0000-0001-9330-3913 ; 0000-0003-0152-348X ; 0000-0003-2596-3391</orcidid></display><links><openurl>$$Topenurl_article</openurl><openurlfulltext>$$Topenurlfull_article</openurlfulltext><thumbnail>$$Tsyndetics_thumb_exl</thumbnail><linktopdf>$$Uhttps://www.proquest.com/docview/2532163305/fulltextPDF?pq-origsite=primo$$EPDF$$P50$$Gproquest$$Hfree_for_read</linktopdf><linktohtml>$$Uhttps://www.proquest.com/docview/2532163305?pq-origsite=primo$$EHTML$$P50$$Gproquest$$Hfree_for_read</linktohtml><link.rule.ids>314,776,780,25731,27901,27902,36989,44566,74869</link.rule.ids></links><search><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Kuhtz, Moritz</creatorcontrib><creatorcontrib>Hornig, Andreas</creatorcontrib><creatorcontrib>Harhash, Mohamed</creatorcontrib><creatorcontrib>Palkowski, Heinz</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><title>Metals (Basel )</title><description>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</description><subject>Adhesives</subject><subject>Bond strength</subject><subject>Calibration</subject><subject>Cantilever beams</subject><subject>cohesive elements</subject><subject>Crack propagation</subject><subject>Design modifications</subject><subject>Dissimilar materials</subject><subject>Energy</subject><subject>Energy release rate</subject><subject>Experimental methods</subject><subject>Galvanized steel</subject><subject>Impact strength</subject><subject>interface characterization</subject><subject>Interfaces</subject><subject>inverse material calibration</subject><subject>Mechanical properties</subject><subject>metal polymer sandwich</subject><subject>Numerical analysis</subject><subject>Parameter identification</subject><subject>Parameter modification</subject><subject>Polymers</subject><subject>Polyolefins</subject><subject>Propagation</subject><subject>Shear tests</subject><subject>Simulation</subject><subject>Tension tests</subject><subject>Test methods</subject><issn>2075-4701</issn><issn>2075-4701</issn><fulltext>true</fulltext><rsrctype>article</rsrctype><creationdate>2021</creationdate><recordtype>article</recordtype><sourceid>PIMPY</sourceid><sourceid>DOA</sourceid><recordid>eNpNUU1LAzEQXUTBUnvyDwQ8ymqy-djssRQ_CvXjoOeQZCd2y7ZZkxSqv97UinQuM7x582aGVxSXBN9Q2uDbNSRCMMeSyJNiVOGal6zG5PSoPi8mMa5wDlkJ3DSjAqboqdtBi563awid1X15txtytYZN0j16grT0LUoezZY6aJty6xv2cGa--v4rT6H5JsNOW4jI-YBmQcclmg5Dn_VS5zfxojhzuo8w-cvj4v3-7m32WC5eHuaz6aK0VLBUakFAYsaYMdA4TggxUmJKrHBUCkpMzamrgTEtGdY605wFI5rKOCY4r-i4mB90W69Xashf6PClvO7UL-DDh9IhdbYHRVjVWgkNc4wzsK0xwkAtW8JJZV1Ls9bVQWsI_nMLMamV34ZNPl9VnFZEUIp5Zl0fWDb4GAO4_60Eq70t6sgW-gPO0X_U</recordid><startdate>20210501</startdate><enddate>20210501</enddate><creator>Richter, Jonas</creator><creator>Kuhtz, Moritz</creator><creator>Hornig, Andreas</creator><creator>Harhash, Mohamed</creator><creator>Palkowski, Heinz</creator><creator>Gude, Maik</creator><general>MDPI AG</general><scope>AAYXX</scope><scope>CITATION</scope><scope>8BQ</scope><scope>8FD</scope><scope>8FE</scope><scope>8FG</scope><scope>ABJCF</scope><scope>ABUWG</scope><scope>AFKRA</scope><scope>AZQEC</scope><scope>BENPR</scope><scope>BGLVJ</scope><scope>CCPQU</scope><scope>D1I</scope><scope>DWQXO</scope><scope>HCIFZ</scope><scope>JG9</scope><scope>KB.</scope><scope>PDBOC</scope><scope>PIMPY</scope><scope>PQEST</scope><scope>PQQKQ</scope><scope>PQUKI</scope><scope>PRINS</scope><scope>DOA</scope><orcidid>https://orcid.org/0000-0003-2653-7546</orcidid><orcidid>https://orcid.org/0000-0003-1370-064X</orcidid><orcidid>https://orcid.org/0000-0001-9330-3913</orcidid><orcidid>https://orcid.org/0000-0003-0152-348X</orcidid><orcidid>https://orcid.org/0000-0003-2596-3391</orcidid></search><sort><creationdate>20210501</creationdate><title>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</title><author>Richter, Jonas ; Kuhtz, Moritz ; Hornig, Andreas ; Harhash, Mohamed ; Palkowski, Heinz ; Gude, Maik</author></sort><facets><frbrtype>5</frbrtype><frbrgroupid>cdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523</frbrgroupid><rsrctype>articles</rsrctype><prefilter>articles</prefilter><language>eng</language><creationdate>2021</creationdate><topic>Adhesives</topic><topic>Bond strength</topic><topic>Calibration</topic><topic>Cantilever beams</topic><topic>cohesive elements</topic><topic>Crack propagation</topic><topic>Design modifications</topic><topic>Dissimilar materials</topic><topic>Energy</topic><topic>Energy release rate</topic><topic>Experimental methods</topic><topic>Galvanized steel</topic><topic>Impact strength</topic><topic>interface characterization</topic><topic>Interfaces</topic><topic>inverse material calibration</topic><topic>Mechanical properties</topic><topic>metal polymer sandwich</topic><topic>Numerical analysis</topic><topic>Parameter identification</topic><topic>Parameter modification</topic><topic>Polymers</topic><topic>Polyolefins</topic><topic>Propagation</topic><topic>Shear tests</topic><topic>Simulation</topic><topic>Tension tests</topic><topic>Test methods</topic><toplevel>peer_reviewed</toplevel><toplevel>online_resources</toplevel><creatorcontrib>Richter, Jonas</creatorcontrib><creatorcontrib>Kuhtz, Moritz</creatorcontrib><creatorcontrib>Hornig, Andreas</creatorcontrib><creatorcontrib>Harhash, Mohamed</creatorcontrib><creatorcontrib>Palkowski, Heinz</creatorcontrib><creatorcontrib>Gude, Maik</creatorcontrib><collection>CrossRef</collection><collection>METADEX</collection><collection>Technology Research Database</collection><collection>ProQuest SciTech Collection</collection><collection>ProQuest Technology Collection</collection><collection>Materials Science & Engineering Collection</collection><collection>ProQuest Central (Alumni)</collection><collection>ProQuest Central</collection><collection>ProQuest Central Essentials</collection><collection>ProQuest Central</collection><collection>Technology Collection</collection><collection>ProQuest One Community College</collection><collection>ProQuest Materials Science Collection</collection><collection>ProQuest Central</collection><collection>SciTech Premium Collection</collection><collection>Materials Research Database</collection><collection>Materials Science Database</collection><collection>Materials Science Collection</collection><collection>Publicly Available Content Database</collection><collection>ProQuest One Academic Eastern Edition (DO NOT USE)</collection><collection>ProQuest One Academic</collection><collection>ProQuest One Academic UKI Edition</collection><collection>ProQuest Central China</collection><collection>DOAJ Directory of Open Access Journals</collection><jtitle>Metals (Basel )</jtitle></facets><delivery><delcategory>Remote Search Resource</delcategory><fulltext>fulltext</fulltext></delivery><addata><au>Richter, Jonas</au><au>Kuhtz, Moritz</au><au>Hornig, Andreas</au><au>Harhash, Mohamed</au><au>Palkowski, Heinz</au><au>Gude, Maik</au><format>journal</format><genre>article</genre><ristype>JOUR</ristype><atitle>A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications</atitle><jtitle>Metals (Basel )</jtitle><date>2021-05-01</date><risdate>2021</risdate><volume>11</volume><issue>5</issue><spage>818</spage><pages>818-</pages><issn>2075-4701</issn><eissn>2075-4701</eissn><abstract>Metallic (M) and polymer (P) materials as layered hybrid metal-polymer-metal (MPM) sandwiches offer a wide range of applications by combining the advantages of both material classes. The interfaces between the materials have a considerable impact on the resulting mechanical properties of the composite and its structural performance. Besides the fact that the experimental methods to determine the properties of the single constituents are well established, the characterization of interface failure behavior between dissimilar materials is very challenging. In this study, a mixed numerical–experimental approach for the determination of the mode I energy release rate is investigated. Using the example of an interface between a steel (St) and a thermoplastic polyolefin (PP/PE), the process of specimen development, experimental parameter determination, and numerical calibration is presented. A modified design of the Double Cantilever Beam (DCB) is utilized to characterize the interlaminar properties and a tailored experimental setup is presented. For this, an inverse calibration method is used by employing numerical studies using cohesive elements and the explicit solver of LS-DYNA based on the force-displacement and crack propagation results.</abstract><cop>Basel</cop><pub>MDPI AG</pub><doi>10.3390/met11050818</doi><orcidid>https://orcid.org/0000-0003-2653-7546</orcidid><orcidid>https://orcid.org/0000-0003-1370-064X</orcidid><orcidid>https://orcid.org/0000-0001-9330-3913</orcidid><orcidid>https://orcid.org/0000-0003-0152-348X</orcidid><orcidid>https://orcid.org/0000-0003-2596-3391</orcidid><oa>free_for_read</oa></addata></record> |
fulltext | fulltext |
identifier | ISSN: 2075-4701 |
ispartof | Metals (Basel ), 2021-05, Vol.11 (5), p.818 |
issn | 2075-4701 2075-4701 |
language | eng |
recordid | cdi_doaj_primary_oai_doaj_org_article_142dc8e94f454ecdbb6be78d1512cfd3 |
source | Publicly Available Content Database |
subjects | Adhesives Bond strength Calibration Cantilever beams cohesive elements Crack propagation Design modifications Dissimilar materials Energy Energy release rate Experimental methods Galvanized steel Impact strength interface characterization Interfaces inverse material calibration Mechanical properties metal polymer sandwich Numerical analysis Parameter identification Parameter modification Polymers Polyolefins Propagation Shear tests Simulation Tension tests Test methods |
title | A Mixed Numerical-Experimental Method to Characterize Metal-Polymer Interfaces for Crash Applications |
url | http://sfxeu10.hosted.exlibrisgroup.com/loughborough?ctx_ver=Z39.88-2004&ctx_enc=info:ofi/enc:UTF-8&ctx_tim=2025-02-09T22%3A12%3A49IST&url_ver=Z39.88-2004&url_ctx_fmt=infofi/fmt:kev:mtx:ctx&rfr_id=info:sid/primo.exlibrisgroup.com:primo3-Article-proquest_doaj_&rft_val_fmt=info:ofi/fmt:kev:mtx:journal&rft.genre=article&rft.atitle=A%20Mixed%20Numerical-Experimental%20Method%20to%20Characterize%20Metal-Polymer%20Interfaces%20for%20Crash%20Applications&rft.jtitle=Metals%20(Basel%20)&rft.au=Richter,%20Jonas&rft.date=2021-05-01&rft.volume=11&rft.issue=5&rft.spage=818&rft.pages=818-&rft.issn=2075-4701&rft.eissn=2075-4701&rft_id=info:doi/10.3390/met11050818&rft_dat=%3Cproquest_doaj_%3E2532163305%3C/proquest_doaj_%3E%3Cgrp_id%3Ecdi_FETCH-LOGICAL-c364t-a61e80444bbe9f5111b88031c6f38631b753f7e44a840aa4bbfceb692bf465523%3C/grp_id%3E%3Coa%3E%3C/oa%3E%3Curl%3E%3C/url%3E&rft_id=info:oai/&rft_pqid=2532163305&rft_id=info:pmid/&rfr_iscdi=true |