Loading…
Argument annotation and analysis using deep learning with attention mechanism in Bahasa Indonesia
Argumentation mining is a research field which focuses on sentences in type of argumentation. Argumentative sentences are often used in daily communication and have important role in each decision or conclusion making process. The research objective is to do observation in deep learning utilization...
Saved in:
Published in: | Journal of big data 2020-10, Vol.7 (1), p.1-18, Article 90 |
---|---|
Main Authors: | , , , , , |
Format: | Article |
Language: | English |
Subjects: | |
Citations: | Items that this one cites Items that cite this one |
Online Access: | Get full text |
Tags: |
Add Tag
No Tags, Be the first to tag this record!
|
Summary: | Argumentation mining is a research field which focuses on sentences in type of argumentation. Argumentative sentences are often used in daily communication and have important role in each decision or conclusion making process. The research objective is to do observation in deep learning utilization combined with attention mechanism for argument annotation and analysis. Argument annotation is argument component classification from certain discourse to several classes. Classes include major claim, claim, premise and non-argumentative. Argument analysis points to argumentation characteristics and validity which are arranged into one topic. One of the analysis is about how to assess whether an established argument is categorized as sufficient or not. Dataset used for argument annotation and analysis is 402 persuasive essays. This data is translated into Bahasa Indonesia (mother tongue of Indonesia) to give overview about how it works with specific language other than English. Several deep learning models such as CNN (Convolutional Neural Network), LSTM (Long Short-Term Memory), and GRU (Gated Recurrent Unit) are utilized for argument annotation and analysis while HAN (Hierarchical Attention Network) is utilized only for argument analysis. Attention mechanism is combined with the model as weighted access setter for a better performance. From the whole experiments, combination of deep learning and attention mechanism for argument annotation and analysis arrives in a better result compared with previous research. |
---|---|
ISSN: | 2196-1115 2196-1115 |
DOI: | 10.1186/s40537-020-00364-z |