Loading…

Parylene-Coated Polytetrafluoroethylene-Membrane-Based Portable Urea Sensor for Real-Time Monitoring of Urea in Peritoneal Dialysate

A portable urea sensor for use in fast flow conditions was fabricated using porous polytetrafluoroethylene (PTFE) membranes coated with amine-functionalized parylene, parylene-A, by vapor deposition. The urea-hydrolyzing enzyme urease was immobilized on the parylene-A-coated PTFE membranes using glu...

Full description

Saved in:
Bibliographic Details
Published in:Sensors (Basel, Switzerland) Switzerland), 2019-10, Vol.19 (20), p.4560
Main Authors: Park, Min, Kim, JeeYoung, Kim, Kyounghee, Pyun, Jae-Chul, Sung, Gun Yong
Format: Article
Language:English
Subjects:
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:A portable urea sensor for use in fast flow conditions was fabricated using porous polytetrafluoroethylene (PTFE) membranes coated with amine-functionalized parylene, parylene-A, by vapor deposition. The urea-hydrolyzing enzyme urease was immobilized on the parylene-A-coated PTFE membranes using glutaraldehyde. The urease-immobilized membranes were assembled in a polydimethylsiloxane (PDMS) fluidic chamber, and a screen-printed carbon three-electrode system was used for electrochemical measurements. The success of urease immobilization was confirmed using scanning electron microscopy, and fourier-transform infrared spectroscopy. The optimum concentration of urease for immobilization on the parylene-A-coated PTFE membranes was determined to be 48 mg/mL, and the optimum number of membranes in the PDMS chamber was found to be eight. Using these optimized conditions, we fabricated the urea biosensor and monitored urea samples under various flow rates ranging from 0.5 to 10 mL/min in the flow condition using chronoamperometry. To test the applicability of the sensor for physiological samples, we used it for monitoring urea concentration in the waste peritoneal dialysate of a patient with chronic renal failure, at a flow rate of 0.5 mL/min. This developed urea biosensor is considered applicable for (portable) applications, such as artificial kidney systems and portable dialysis systems.
ISSN:1424-8220
1424-8220
DOI:10.3390/s19204560