Loading…

Response of the ice cap Hardangerjøkulen in southern Norway to the 20th and 21st century climates

Glaciers respond to mass balance changes by adjusting their surface elevation and area. These properties in their turn affect the local and area-averaged mass balance. To incorporate this interdependence in the response of glaciers to climate change, models should include an interactive scheme coupl...

Full description

Saved in:
Bibliographic Details
Published in:The cryosphere 2010-01, Vol.4 (2), p.191-213
Main Authors: Giesen, R. H., Oerlemans, J.
Format: Article
Language:English
Citations: Items that this one cites
Items that cite this one
Online Access:Get full text
Tags: Add Tag
No Tags, Be the first to tag this record!
Description
Summary:Glaciers respond to mass balance changes by adjusting their surface elevation and area. These properties in their turn affect the local and area-averaged mass balance. To incorporate this interdependence in the response of glaciers to climate change, models should include an interactive scheme coupling mass balance and ice dynamics. In this study, a spatially distributed mass balance model, comprising surface energy balance calculations, was coupled to a vertically integrated ice-flow model based on the shallow ice approximation. The coupled model was applied to the ice cap Hardangerjøkulen in southern Norway. The available glacio-meteorological records, mass balance and glacier length change measurements were utilized for model calibration and validation. Forced with meteorological data from nearby synoptic weather stations, the coupled model realistically simulated the observed mass balance and glacier length changes during the 20th century. The mean climate for the period 1961–1990, computed from local meteorological data, was used as a basis to prescribe climate projections for the 21st century at Hardangerjøkulen. For a linear temperature increase of 3 °C from 1961–1990 to 2071–2100, the modelled net mass balance soon becomes negative at all altitudes and Hardangerjøkulen disappears around the year 2100. The projected changes in the other meteorological variables could at most partly compensate for the effect of the projected warming.
ISSN:1994-0424
1994-0416
1994-0424
1994-0416
DOI:10.5194/tc-4-191-2010